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EXTRACT FROM THE PREFACE TO THE
FIRST EDITION '

The main purpose of the book is to give a logical connected
account of the subject, by starting with the definition of “Number”
and proceeding in what appears to me to be a natural sequence of

N

stepa. A
Since modern Analysis requires great precision of statemgﬁt, and

demands from the student a very clear understanding gfiits funda- --
mental principles, T have aimed at presenting the gui;jecb in such
a way ag to make every important concept 'clearly.frn'derstood. The
examples at the end of each chapter have been 'chosen mainly to
Hlustrate the fundamental coneepts, and }il\bst of them have been
taken from a collection which I havewiade of questions suitable
for examination and exercise work formy students, -

It is extremely difficult to a,gr;k}ﬁo%vledge indebtedness to all the
different sources in a work of $his kind, and I am fully'awafe that
T have benefited Iargely’@m most of the o:)iistipg text-books and
standard”-: works on'tha.8ubject,’ as well as from the lectures of
Prof. J. E. untlewo;é, F.R.S, and Mr S. Pollard of Trinity College,
Cambridge. Sjnéé"it is 8o often difficult o discover the rightful
originator pf ‘particular theorems or modes of «demonstration, no
system.a(ic:ﬁttempt has been made to cite authorities; but where
I hayé: a‘eﬁm’tely borrowed from any recent work which appears to

) Possess originality, acknowledgement has -' been made either in
fdotnotes or in the text itself

Prof. W. E. H. Berwick very kindly read through part of the first
drafs of the manuscript, and made some helpful suggestions for
which I am grateful. My sincere thanks are due to Prof G. N,
Watson, F.R.S,, for valuable criticisms and suggestions which have

<
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' ]ielp‘ed_ very greatly to improﬁe the form and presentation of the
book; and to my colleague Mr W. M. Shepherd for his kindness in
drawmg all the diagrams and for his help with the proof-reading,
I desire also o express my gratltude to the officials of the University

Press both for their unfailing courtesy and for the excellence of
~ thetr work. )
: "E. G, PHILLIPS
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PREFACE TO THE SECOND EDITION

The second edidion of this book, based ‘on a course of lectures on
Analysis first prepared for the Honours students in the University
College of North Wales, is largely a reproduction of the first edition,
My experience of using the book with my pwn students(lass
convinced me that it is alreédy diffienlt enough for thosgi #whio are
using it as their first introduction to rigorous Ana!}{sié’:@nd so I
have made no substantial changes in the subject-matier.

I have taken advantage of the opportunity to clarify a few
obscurities and to eorrect some errors which«bad been overlooked
in the preparition of the first edition; and\I take this opportunity
of thanking all those who kindly drew Yoy attention o - many of
these. - N\

T have altered a few of the e:mmples and I have also 1ncluded .

3

gome additional ones. .
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4 : CHAPTER 1

NUMBER

" I'l. Introduetion..
The foundation upon which the whole structure of the subject
of Mathematical Analysis rests is the theory of real numbers.
Accordingly an obvious starting-point for our study of this
subject is the series of “natural numbers” )

R

L2383 ...,0, ... LM
These numbers are so familiar that it seers quite reasonable to
assume that the concept of “number” is one of owrprimitive, or
even inbuitive notions, and that consequently it ddes not require
defimition. In fact most of the existing textsbeoks do begin by
accepting the matural numbers as “known? ahd therefore as not
requiring definition. The reader who is(s& isfied with this point
of view will be saved a good deal\8f)preliminary difficulty by.
omitting much of the work with which the present chapter is
concerned. ANY
The problem with which wé& are faced is to decide what we are
to accept ag “given.” Tt would certainly be the easiest way out of
‘the difficulty to accepf\the natural numbers as “given”; and
without going outiiié. what is usually understood to be “mathe-
matics,” this is the‘only reasonable starting-point which can be
made, P '
There arg -jit\vo main reasons why we shall not accept the conceph
of numbei;‘% a primitive concept which does not require definition.
One Fe\\Ssoh is that by doing so we might be in danger of leading
the.yéader to think that the foundations of the subject cannot be
.. baséd upon apything more fundamental than “number” a5 a
<_primitive undefinable concept. The second reason is that our
preliminary investigation of & logical definition of number is the
natural introduction to one of the best methods. of .defining an
irrational number. _ '
It is often stated that the foundations of Real Variable Theory
have not yet reached an entirely satisfactory position, and to a
‘certain extent this may be true ; but no reader who wishes to make

PaA ] I



9 : NUMBER [cH. 1

a systematie study of modern Analysis ought to remain in entire |
ignorance of the field of study which has been opened up by Frege,
Bertrand Russell and others* in reducing to logic those arithmetical
notions which had previously been shewn by Peano to be sufficient
for mathematics. To consider this question fully would make this
chapter unduly lengthy ; accordingly 1t has been thought sufficient
to indicate the main essential ideas, and leave the reader to consult
other treatises for a more detailed explanation, ~
No science is-entirely self-contained ; each borrows the strehgth
of its ultirsate foundations from something outside itsali}'s}reh as
experience, or logic or metaphysics. This is the case &ith Pure
Mathematios, and the definition of number which ig*given in this
- chapter is a logical definition ; hence some knowledga of that field
of study which has come to be known as “mathefiatical philosophy” -
is unavoidable. '

Although the natural numbers seem o 'rép;esent what is easiest

and most familiar in mathematica,‘vérjr few people would be

prepared with a defimition of what @8)feant by “number” or *1”

or “3," and a much greater difficulty arises when we consider
how to defing «0.” ™

It may be remarked that'®is a rocent addition to the series of
natural numbers, and the\Greeks and Romans had no such digit.
All the essential /ideas involved in the logical-definition of
number will be expliizied as simply and as untechnically as possible;
but bowever cartfully we attempt to avoid difficult and unfamiliar
phraseology, s chapter will unavoidably appear difficult, and
porhaps axtificial to the beginner. As we have already remarked,
howeyef,We must deal with these nnfamiliar ideas, unless we are
_contghi to shirk all the difficulties by the unjustifiable assumption
| th@b we already understand what is meant by “number.”

'\ . . :
o\~ Historically, the progress of mathematics has been constructive

"in the direction of rapidly increaging complexity. In the case of
number, with which we are now concerned, the natural numbers
1,2,3,...,%, ... o
* Frege's Grundlagen der Arithmetik {1884} gave the fivst correct logieal definition
of m.xmber, but the book sttracted little attention, and ité contents remained
practically unknown until they were rediscovered by Russell in 1901,

. '1“ The render may p:{oﬁta.bly eonsult B. Bussell’s Introduction to Mathematical
Philosophy, and J, E. LitHewood’s Elements of the Theary of Real Funetions {1926).

—



11] © NuMeER 3

were the first to be considered, and their earliest use was in an
ordinal sense, when they were employed for the purpose of counting.
Our familiarity with the use of the natural numbers for counting
is one of the chief obstacles to be removed before we are able to
give a satisfactory definition of a cardinal number. The commonest
every-day use of numbers (for the purpose of counting) is just the
aspect of number which is Jeast helpful for this purpose, and the
definition of & cardinal number must not involve the use of counting
The importance of the distinetion between eardinal and ordinal
numbers will be. emphasised as we proceed ; and the reader will
see later that counting, although so familiar, is logically’\a very
complex operation. All that need be said at the momegnt is that
counting employs the natural numbers in an ordinalsgnse, and the
logical definition of “order” and “ordinal number®is by no means
easy. N -

The impossibility of defining a cardinal number’ %‘i‘.h& process of enumers-
tion is very obvious when viewed psychologically. “Counting,” it is said,
“consists of successive acts of attention ; fhewesult of such a succossion is a
number.” In other words, “the numben sévén is the result of seven acts of -
attention.” This makes the vicions ?imlé ‘obricus, .

The introduction of fractiond into ‘arithmetic was the next step,
these arising naturally in colthection with the problem of measure-
ment; and their introdmetion was comparatively easy. On the
contrary the negat've\‘nﬁmbers cansed a great deal of trouble. For
some time negagive’numbers were called absurd and fictitions,
and the fact that-the product of —a and — b could give a positive
number ab Wés\_ for a long time a difficulty to many minds*. The
subae uenh\lhtmduction of irrational numbers, such as /2, /6, =
and gk&id not excite much comment. In actual calculations
approxituate rational values were used, and it seemed quite

_T&ttral to subject them to the same laws as rational numbers.

. Jrrational numbers arose ‘first in connection with geometry, with
the discovery by the early Greek geometers. that there is mo
fraction of which the square is 2, a result which naturally emerges
out of the problem of determining the length of the diagonal of a

* In the latter half of the eiglllteenth eentory, Mageres (1751-1824) and Frend

{1757-1841) published works on Algebra and Trigomometry in which the uase of
negative numbers was disallowed, although Descartes had used them freely more

than a hundred years before.
: I-2
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-unit sguare. ‘With the invention of algebra the same question
arose in the solution of equations, but here it tock a wider form
involving also complex numbers, which will be dislcussed later.
Although irrational numbers were discovered as early as the
time of Pythagoras, no real advance towards constructing a rigorous
theory of irrational numbers was made until the time of Weierstrass
. (1815~97) and Dedekind (1831-1916). It may be remarked that
if we agree to accept the matural numbers as fundamental, and
thersby avoid the necessity of considering any mathematical
philosophy, even then some rigorous theory of irrational nu}}i'be}s
is necessary befors Analysis can be founded on a satisfactory.basis.
The definition of an irrational number which will subsequently
be given is due to B. Russell, and it is a slight mb@ification of
. Dedekind’s method. . = - oo .
" The other method of pursuing the study of tathematics is the
reverse of the historical order of progress. Idgfead of pursuing the
constructive process towards increasing oémm lexity, we proceed, by
analysing, to greater abstractness and logical simplicity. Instead
of considering what can be defined\&nd deduced from our initial
agsumptions, we examine whetheraiiore general ideas and principles
can be found in terms of whick\éur original starting-point can be
defined or deduced, This sécond method is what characterises the
study which has come t03be known as mathematical philosophy.
Thus, if our foundatiohgare to be based farther back than on the
mere postulation of $he existence of the natural numbers, it can
only be done byéonsidering some of the questions with which
; ma.thematiqg.{‘philosophy 18 eoncerned,

T12 F]J;thimental notions. -

Weltiow state what concepts must be taken as fundamental in
(Order to give a definition of number. The following remarks may
peérhaps clear the ideas of the beginner, and help him to appreciate
the definition which will subsequently be given. A trio of men is
an instance of the number 3, and the
number, but the trio iteelf is not an
number 3 is not identical with any eollection of terms having that
number; it is something which all trios have in comnon, and
which distinguishes them from other collections. It brings us a

number 8 is an instance of
instanee of number, The

»
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step nearer to the correct definition when we realise that number

. isto be regarded as something which characterises certain collections.

'Qa.

The reference to a “collection” of objects introduces the first
important concept, that of an aggregate,

An aggregate {or collection) of objects which is conceived of as
containing more or fewer objects is 4 concept which will be taken
as primitive, and no attempt is made to define it. A great deal
can be kmown about an aggregate without our being able to
enumerate its members.,Fhé elements composing an aggregafe
need not possess any parity as regards size or any other spegial :
guality. For example, an aggregate may be “all the living gréatutes
in the city of London,” “sll the trees in a certain garden,”or any
other collection of entities of entirely diverse characidristics.

- "An aggregadte, considered quite apart from t.{)e order of its

mem'bcrs is termed a OLASS or SET.
A great part of mathematical ph1losoplxy Is concerned with
RELATIONS, and although only a few impertant relations enter into
the discussions in this book, a few remarks may be helpful to the
beginner., .

Amongst the most important - kmds of relations is the class of
“one-many,” “many-one,” and\ “one-ong” relations*, If 4 and B’
denote two sets of entities, the relation between these two sets is
“one-many,” if more thafi ‘ene member of the set B bears the given
relation to each member’ of the set A.

The following exathples will make the ideas clearer. in countries where.

monogaty is pragtised the relation of Ausband to wife is ome-one, in poly-
gamous couniriesithe relation is one-many, and in Tibet, where polyandry is

.~ practised, $hel zelation is many-one. The relation of father {0 son is one-many,
 that of sbq‘w Father is many-one, but thap of. eldest s0m. fg_father is one- one.

%

The domam of a relation consists of a,H those terms which ha.ve

'the rele.twn to somethmg or other, and the converse domain consists

of all those terms to which something or.other has the relation,
The field of a relation consists of the domain and the converse

domain together.

* The nse of the word “cne” in the deseription of these relations is justifiable,
for = meaning can be assigned to the above relations whioh does not require any
conoept of the eardinal pumber ' 1." For an interesting remark on thls point, see
Littlewood's Xlements of the Theory of Real Functions (1926}, p. 3.

AL .
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A further notion which is required is that of CORRESPONDENCE :
this is_the notion which nnderlies the process of tallying. The

elements of one aggregate may be made to stand in some logical
relation with those of another so that a definite element of one

aggregate is regarded as correspondent to & definite eloment of
éﬁéther aggregate. '

Two aggregates which are such that to each element of the first
there corresponds one and only one element of the second, and to each

element of the second. there corvesponds only one element of the first,>
are said {0 be (n ONE-ONE CORRESPONDENCE. _ \

o"' \

121, Definition of number. O
Two aggregates are said to be SIMILAR when there 'is 4 one-one
correspondence which eorrelutes their elements. Sujpose now that
all couples are in one bundle, all trios in another, and so on. In
this way we obtain varions bundles of collections. Each bundle is
a set whose members are classes; thus eachGh a sef of classes, To
deride when two collcetions are to be]ong* to the same bundle we
use the notion of similarity defined abéve. Given any aggregate,
we can define the bundle to Whiqh‘if. must belong as being the set
of all these aggregates which are'similar to it.
- We therefore give the followang definition :

The NUMBER of @ ?{ﬁ'ﬁ % the set of oll those classes that are
stilar to i, )

s\
According to this definition the set of ol couples is the number
2; the set of all frids is the number 8, and so on.

- Numbers ip\gencral have been defined as bundles into which
similarity cGllects classes. A number is s set of classes such that
any tworofthe classes are similar to each other, and none outside
the qe#i} similar to any inside the set,

Aniihe same lines the number 0 ean be defined. The number 0

: ,.'m;’&h'e number of terms in a class which has no members, and this
elass is called the null class. By the general definition of number,
the number of terms in the null class is the set of ail classes which
are similar to the null class, and this is easily seen to be the set
whose only member is the null class. The purely logical definition
of the namber 0 may therefore be given as follows :

The numiber 0 is the set whose only member 1s the null class.
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1-3.  Relations, )

The important type of relation known as a one-one relation has
already been mentioned. The concept of one-ome correspondence
ig of fundamental importance, for upen it depends the definition of
number given above. There are, however, many other kinds of
relations, and one very important type, “serial relations,” will be
peeded when we define “order.” _

The following examples of “ene-one” relations may assist the
reader to assimilate some of the essential idess involved.
" Taks the first ten integers {excluding 0},

o, 23 ey 8,9, 10 e
"This set can clearly be correlated with the set of integers \

28,4, 00y 9,10, 11 e S (®);
and the relation which correlstes these two classes can bp'\l:'feécribed as the
relation of n to n+1, The relation is clearly one-oney algo the domain and
converse domain overlap, for all the members of claﬁg(l), save the first, are
repeated in class (2), and class (2) contains only opé hetw member, 11.

Tf, instead of the relation of 2 to n+1, we takehe refation of o number lo
its square, we obtain the set of integers AV ) a

wdy 4,8, ., 64,81, T00 Lo O (2), -

which also bears a one-ong relation to the Set (1)

Lo

R W

*

1-31. Serial relations. .

An idea which obviousml;(\aalls for attention is that of an aggregate
whose members are giranged in a certain order. In defining
number we considqréd aggregates quite apart from any question
of order among "f[.h’gji- members. The numbers which we were able
to define in this'way are called CARDINAL NUMBERS.

- An ordgr\ea‘éggregate, which appears to be a greater complexity

~ than a class, is resolved in quite a simple way; but before we can
deal gith ordered aggregates, serial relations must be understood.
At will be seen that an ordered aggregate leads naturally to the
définition of an ordinal number.

In seeking a definition of order, the first thing to realise is that
no set of terms has just one order to the exclusion of others; a set
of terms has all the orders of which it is capable. It is true thay
the natural numbers (due to their employment for the purpose of
counting) oceur to us most readily in order of magnitude, but they
are capable of an unlimited number of other arrangements. The
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4

definition of order is not therefore to be sought in the natare of
the set of terms to be ordered, since the same set of terms has
~ many different orders. The order les, not in the sef of terms, but
in a relation among the members of the set, in regpect of which
some appear ag earlier and sowme as later.
The essential characteristics of a relation which is to give rise
. to order may be discovered by cousidering that in respect of such
a relation we must be able to say, of any two terms in the set
which is to be ordered, that one “precedes” and the other “followd™
We require the ordering relation to have the following ,thrée
properties: ° R\
(1) AsYMMETRY. Tf  precedes y, ¥ must not also ‘précede .
We say that any given relation is asymmetrical wheny of it holds
from z to vy, then it does not hold from y to @ \

Relations which do net give rise to aeries often do wefN\Have the property of
asymmetry. The relation “is the cousin of” ia anybxample of this, for if «
is the cousin of g, ¥ is alse the cousin of . ¢ '

(2) Tmansitiveness, If z precedes\g<and y precedes z, then =
‘must also precede 2, 4 relation is gransitive when, if it holds Jrom
@ to y and from y do z, it also holdsfrom  to 2.

The relation considered above is}litét transitive, for if x is the cousin of s
and g of 2,  may not be the eousittof z, for & and 2 may be the same person.
The relation “sameness of hisight ” is transitive, but not asymmetrical. The

relation “father” is agymmstrical but not transitive. The reader is advised
to construet examples fer‘himself.

(3) CoNNEOTI®IMY. Given any two' terms of the class which is

to be ordered)$here must be one which precedes and the other
whieh folloga,™ : :

A rglw;t‘iﬁ?z is connected, if given any two memibers @ and ¥ of its
field, t?ee)v, either the relution holds Jrom @ to y or from y to x.

(TL& relation “ ancestor” has the first two proporiies, hut not the third*.

¢ lts“fa.ilure to possess the third property makes it an insufficient relation to
arrange the human race in & series,

DEFINTTION. A relation is seria] tf it is asymmetrical, transitive
" . and connected,

A series is the same thing as a serial relation.

* We imply of eourse that the field of the relation considered ig tha humsn rage.



1321 ORDER g

1-32. Order. _

The three properties required in order that any given relation
may be serial have now been examined. It is not possible, without
greatly increasing the number of new ideas and technical terms,
to go very deeply into the question of order; but to be able to

understand the fundamental relation “less than” the following

definitions are requlred
(1) A proferty is sa;d to be hereditary in the natural number

series, if whenever it belongs to a number » it also belongs $o°

n+1, the successor of n. N\

(2) The successor of the number of terms in the class A i the
number of terms in the class consisting of 4 together w1t‘.h &, where
x 1s any term not belongmg to 4. ”

(8) A number m is said to be less than another@ttmber 1 when
n possesses every hereditary property possessediby,the successor of .

It is not difficult to prove that the relation\“less than” so defined
is serial, and that it has the finite ca.rdir{éhl numbers for its field,
By means of the relation “less than” $he tardinal numbers acquire

w4

£

an order, and this order is the so- caﬂed “natural” order, or order ,, i

of magnitude *.

The generation of series by meams "of relations more or loss reaemblmg that
" of m to n+1 is very common. Theseries of kings of England, for example, is
generated by relations of eadh Mo his successor. This is probably the easiest
way, whare it is applicable” c?f conceiving the goneration of a series,

1-33. Cardinal a.nﬁ%rdma.l nurmbers,

The distinctisnbetween a cardinal and an ordinal number i
rendered diffitult by the fact that each finite _positive mteger_:ls
made o, ser\Ve two digtinct purposes; it may be used to count,
when ”b\rs acmng in the ordinal sense, and it may be used to
number when it is acting as a cardinal number. Symbolically there
_igno’ distinetion whatever between a cardinal and an ordinal aumber,
bt logically there is a fundamental difference between them.
As we have already seen, the quegtion of order is irrelevant to the
definition of a cardinal number; and it is partly in order to secure
this important distincfion between cardinal and ordinal numbers
that thé discussion of “serial relations” and “order” has been given.

* The questions considered in this section are only briefly mentioned. For fuller
reference the reader is referred to Russell'z book, loc, eit. Chs. v
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Briefly it may be said that cardinal numbers are obtained from
the idea of equivalence, ordinal numbers from the idea of likeness.
The precise significance to be attached to these two ferms can be
seen in the following definitions: . .
(1) Two aggregates A and B are EQUIVALENT (SIMILAR) ¢f there
1§ ¢ .ong-one correspondence bebween thelr members.

(2) Two series S and T are LIXE (ORDINALLY SIMILAR) if there
18 & one-one cbrrespondence betrween their members, preserving the
order®. : ~

So long as our attention is confined to finite aggregates, rearranges
ment of the members of the aggregate cannot alter the qrdihal
number; in whatever way we count the members of {a) finite
aggregate we always end up with the same number. Thus all the
possible series which arrange the members of a finité/olass are like
series, : . "‘\

Two finite series which are like, are said to have'the same ordinal

- number, and by analogy with the deﬁnition:lb} ‘a cardinal number
we can give the following definition : \ - .

The ORDINAL NUMBER of a series i 3he set of all those ordered
aggregates that are like (ordinally similar to) i,

The important distinetion betwean. ¢ardinal and ordinal numbers is best
seen by considering inyinite agyregaies. A simple exampia will suffice.

Consider the two series Ve .

(AXB 2 3, ey 7y sy O,
| ¢ '\(‘B)" L2,3 ..,0, ...

The series (A) and‘(\)‘ are not ordinaily similar, for there is not a one-one
correspondence whigh.correlates each term of (A) with each term of (I3) and
which preserves theorder, for there is no term in (B) with which the term 0 of
(4) tallies. THe,ordinal nuraber of the sories (B} is usually denoted by w, and
the ordingl@rmber of the series (4} is then denoted by o +1.

If these_ wo series are considered as classes, no aceount being taken of
orderpthere is & one-one correspondence hetween therg.

e (4 0,1,2,3, ..., 7, ...,
Y (BY 1,2,3,4,..,n+1, ...

. When {A) has been rewritten as (A", the classes (A"} and {B) are corralatad
by the one-one relation of » to n+1. . Thus both (A" and (B) are classes
which belong, to the same set of classes, and the cardinal number which is
characteristic of this particular et is dencted by 8, {Aleph zero),

* That is to say, & one-ona correspondence in which, if =’y y' correspond fo any
2, . then 2’ precedes y' if # precedes y,
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The question of order has not been very fully discussed, bust the
reader should realise that we have indicated the lines on which it~
i8 possible to give a purely logical definition of the relation “less
than.” The phrase “less than” is not used in its primitive sense as
referring to magnitude. By virtue of the definitions in § 1-32, “less
than” 15 a well-defined type of relation; it satisfies the three
conditions which make it a serial relation (§ 1-31), so that when it
is applied to the finite cardinal numbers it arranges them in a
series. .Thus whenever we have to deal with the ordered aggregate\

0,12 ...,n... \
we are, in reality, dealing only w1th the relation “less than e Thls
relatien, which is of the serial kind, is really wha.t we Jfhean by
“the natural numbers arranged in ascending order
14, Operations on .classes. ‘\"

The reader has doubtless realised that c\ 353 and numbers are
entities of different kinds, although it Has been shewn that the
definition of number depends on the con\ept of a class. The signs
+, —, x of elementary algebra are ecduyeniently employed to denote
those operations on classes whichtaré the obvious analogues of the
operations of addition, subtragtion and multiplication in elementary
algebra. If 4 and B denote] fwo given classes, the meaning of 4+ B
depends upon the d@ﬁnﬁ;mn of the addition of two classes which
follows.

When some or a}LL\ef the formal laws of algebra are satisfied with
new meanings dstigned to the symbols +, — x, it is much more
convenient fo'se these symbols than to try to invent new ones fo
replace tHepr, The three concepts of class, cardinal number and
ordinal @hmber, involve three distinet algebras.

I and B denote two given classes, ¢ and b two given cardinals
.azg;:l"'oc and B two given ordinals, the meaning of the sign + is

(\different in each of the expressions
A+B, a+b otp. _
- Bach new kind of number which ig introduced involves a new
algebra, for which it is necessary to shew, from the definitions,
whether some or all of the fundamental laws of algebra hold.

We now give the definitions of addition, subtraction and multi-

plication of classes,
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-(l)l Addition of classes. The sum class* %4 of a set of classes 4
is the class consisting of every term which belongs to some cfass
4 of the set.

The sum class of 4 and B is denoted by 4 + B, that of 4, B
and C by A+ B+C, and so on. The sum class is independent of
the concept of order, and

| | A+B=B+A.

(2) Subtraction of classes. If the class B is contained in thg\
class A, A— B denotes the class of those terms which belong 6.4
but not to B. O\

(8) Product of classes. The product TL4 of a set of clagdes is the

. ¢lass consisting of all those terms which belong to everyelass A of

the set, For two given classes 4 and B, the product\.ii written AB.

It can be shewn that the formal laws of algebra) so far as they
concern addibion and multiplicntion, are fulfilled)so that the nota-
tion used for addition and multiplication of tlasses is convenient by

* its analogy with ordinary algebra, Thus(")

(44 B)C=A0+ BC=UB +CA.

141, Operations on cardinal mitmbers.

" If a and b are two given cardinal numbers, a+b is defined to
be the cardinal number éAthe class 4+ B, where 4 and B are
exclusive classest hav’%g ‘eardinal numbers @ and b respectively.

The product ab Lshe ined to be the cardinal number of the olass
of ordered couples e, y), such that & is a member of the class 4
and y is a meniﬁer of the class B. -

It remaifg’to define exponentiation. In order to render the
definitich\of exponentiation suitable for sxtension o infinite classes,
the hggb way to define it is as follows. Let P be the class of many-
’clngi:’orre]ati_ons between the classes A and B ;. that 1s, correlations
in} which every member of R is partnered by some member of A,
repetition of members of 4 being sliowed. The cardinal number P
of the class’ P (which is independent of the choice of the classes 4

* Although we are conocerned only with finite classes, and with sets of olasaes for

- which the number of classes in any given set is finite, the definition of the gum class

doas 1ot depend ngon the number of classes 4 being finite.
T Twa clasees are exelusive when they have no sommon member,
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and B) depends only on a and b. The cardinal number p thus
defined is a®. We assume that 50 in the preceding definition,
It is usual to define a® to be the sardinal number 1, and 09 is not
defined. :

The genesis of the above definition in common sense is "¢ kinds
of things in b holes.” , '

In the above definitions the classes 4 and B are required to be exclusive,
(iven any two classes 4 and B which are not necessarily exclusive, it is easy
o construct two classes A’ and B' which are exclusive, and such that 4 and %
A’y B and B’ are similar; for 4’ is the class of ordered couples (z, «), and &
is the class of ordered couples {¥, 8), where « and 8 range respectivaly'thi'gﬁgh
the classes 4 and B¥, )

1'5. Real numbers. N

Cardinal and ordinal numbers have both been definéd)but neither
of these is capable as it stands of the extenaions.'ﬁf the concept of
number to negative, fractional and irrabiona{ snumbers. Logical
definitions. of these extensions will now be,giyen.

At the outset it must be emphasise.d’tl’ia\ if mm denotes any finite
cardinal number as defined in § 1-21, #.is not the same as + m, nor

Ny

is m the same as ? Further, ip:’is: not necessary that irrational

numbers, such as the square rp}:;t’df 2, should find their place among

“rational fractions as beingzgreater than some and less than others.
In fact, distinetions of phis kind must be made in order that precise
definitions may be g\wﬁ. '

i) Posttive and.siegative integers.

Both +1 a.nd:\—; 1 are relations, and they are converses of each
other, The'ebvious and sufficient definition of + 1 is that it is the
relatio \ifl;i +1 to »n, and — 1 is the relation of n to n+1. If m be
any ,c:';\:’rdma] number, + m is the relation of m + n.to n (for any n),
and = nz is the relation of n to m +n. The point to be emphasised

{38 that +m cannot be sdentified with m, which is not a relation, but
a seb of classes, '

(it} Fractions.

The fraction m/n is defined to be that relation which holds
between the iwo cardinal numbers p and g when pn=gm. The

* For forther details, the reader shounld refer ic the books of Ruesell and .
Littlewood, loc. cit,
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definition -enables us to prove that m/n is’a one-one relation
provided neither m nor »is zero. nfm is the ‘dhnverse relation to
mfn. Accordingly mfl is the relation between the two cardinal
numbers p and ¢ which consists in the fact that p=mgq. Heuace
again, since m/1 is a relation, it cannot be the same thing as m,
which is a set of ¢lasses.

It can be seen that Ofn is always the same relation whatever
number % may be: if is the relgtion of 0 to any other cardinal
number. This is the zero of rational numbers, and it is not of courde\
identical with the cardinal number 0. Conversely m/0 is always
the same relation whatever m, but there is no finste cardinal.dutiber
which corresponds to sm/0: this may be called the “infinity of
rationals.”- It is to be noted that this “infinity” doeginat require
for its definition the use of any infinite classes or ififinite integers.

Zero and infinity are the only relations among\ratios which are

* mot one-one: zero is one-many, and infinity is trany-one.

Greater and less among fractions are easily defined: m/n is less
tham plq if mq is less than pn. The reldtibn less than so defined is
serial, 50 that the fractions form a serfes in order of magnitude.

Positive and negative ratios canbé defined in a similar way to
that used for defining positive :aﬁci negative integers. The addition
of the two ratios m/n and p/q i® defined to be the rasio (mq + pn)fng,
the product of the same {wo ratios is defined to be mp/ng. If zbe
any number, integralor fractional, the use of a ratio as an index is
defined by the posﬁﬁh e

: O~ gble, gmin = gojatmpn

R
The symbolia?? is to be interpreted subject to this postulate
provided bhiat such interpretation is possible. '

qui'tz ¢ and negative ratios can be defined just in the same way
as_positive and negative integers. Thus -+ P/g is the relation of

p «f"]”‘ +plg to mfn, where m/n is any ratio; —pfq is of course the
gonverse relation of + p/fq.

The reader should note that the above meth
could be adopted for dealing with ratios,
With the method adopted for integers. It has been remarked hy Hobgon®
that the above methed iz open to the objection that it iz of an arbitrary

) charaeter, and it is not casy to seo why the particular laws of operation have

od i3 not the only ene which
but it hag the advantage of analogy

* Theory of Functions of a Real Variafs!e, (1821}, §§ 1%, 13,
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been postulated, except as suggested by the traditional non-arithmetical con-
cept of a.fraction. To remedy this, Hobson gives another method of dealing
with ratics, and the reader may refer, for an explanatlon of this, to the
reference given in the footnote.

(i11) frrational numbers,

The cxtensions of the domain of number hy the introduction of
fractional and negative numbers were suggested by the desirability
of constructing a domain so complete that the operations of division
and subtraction might always be possible. In the aggregate ‘of
rational numbers, the operations of addition, subtraction, multiph-
cation and division are always possible operations, but it iy easxl"
shewn that the opemtlon of determining a fractional 'power of
a rational number is not, in general, a possible one. ~,‘ 3

A simple proof can be given® that ne posztwemmmger m other
tharn a square number has a square root withse e aggregate of
rational numbers. p \\;

For, if possible, les m be the square of a(rational fraction pfg in
its lowest terms; thus p® —my? = 0. There/always exists a positive
integer n such that nf<m< (n+ 1)2 wethen getng<p<{(n+1)g.
Consider the identity

(mq —np)*—m(p— m})‘“ (n2 m)(p?—mg?) = 0:
from this identity it follq}vs ‘that m is the square of a rational
number (mg —np)/(p '—ian) whose denominator is less than ¢. This
contradicts the hypothesis that m is the square of the fraction p/y
which is in its lowest terms. Hence there can be no rational
number whose,sGliire is m. '

Asan lllusg'atlon consider the case in which m = 2. An ascend-
ing sequetied”of fractions, all of which have their squares less
than 2 %1 be found; and, by taking enough terms of the sequence,
a number will be reached whose square differs from 2 by less than
ALy, asglgned amount. X

‘Such a sequence; for example, is

1, 1, 12, 104, 141, 1411, 1412, 1413, ... (A).
Similarly a descending sequence can be found, such as
, 92, 17, 16, 15, 148, 142, 1417, 1416, ... (B}
in which all the terms have their équares greater than 2

* The proof is due to Dodekind, Stetigheit und irrationale Zahlen [Brraunschvlreig,

16873},
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A

This fact ﬁaturally suggests that between these two sequences of
fractions the square root of 2, if it is to exist, must lie. On these

~ lines attempts have been made to define /2. We shall now explain

the method given by Dedekind¥, and then, by a modification of
this method, the definition of an irrational number will be obtained.

Suppose that all ratios are divided into two classes according as
their squares are less than 2 or not, We then find that among those
whose squares are nof less than 2 (numbers such as appear in
sequence (B) above) all have their squares greater than 2, Theré ™
is no maximum o the ratios whose squares are less than 2, and\no
minimum to those whose squares are greater than 2. Clearly’a
similar argement applies to numbers other than 2, Ao

Thus all ratios can be divided into two classes suchofhab all the
terms in ome class are less than all the terms in fHe‘other, there
being no maximum to the lower class and ne thinimum to the
upper class. Y,

This method of dividing all the terms of@a’series into two classes
L and U, of which one wholly precedes the other, was adopted by
Dedekind, and it is called a Dedekind cuit. There are four
possibilities, SONY

(1) There may be a maximiuit to the lower section L and a

‘minimum to the upper seqhioﬁ' U; (2) there may be & maximum to

L and no minimum to U;}@) there may be no maximum to Z and
a minimum to U; (&k{hei‘e may be neither a mazimum to L nor
& minimum to U 5 :
_ An example of ease (1) is the series of integers, If all the
Integers not greater than 5 constitute class Z, and all those greater
than 5 constitiite class U, L has the number 5 for maximum, and
the nut\r@er 6 18 the minimum for U, The series of ratios illustrates
casesy(2) and (8). If the lower section L contains all ratjos up to
andincluding , and U contains the remainder, then } is the
maximum for L while U has no minimum. If the ratio § be

* Another method of defining an irrational number has been given by Cantor, but
this theory depends upon the nge of convergant infinite Eequences, & concept w’hieh
has not yet been considered. An seconnt of Cantor's theory ean be found in
Hobson_’s Functions of & Real Variable, 1 (1921), § 23 e seq. . A brief note on Canior's
theory is given in §6-3. ’

+ German Seknitt: French coupure,

‘ English writers ugnally speak of & Dedekind
section. )
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included in U instcad of in I, case (8) is similarly illustrated. An
example of case (4) has already been considered, the sequences (A)
and (B) above being composed of typical terms chosen respectively
from the classes L and U. This fourth case is important, and we
say that there is a “gap,” or that we have an “irrational section,”
since sections of the ratios have gaps when they correspond to
irrational numbers.

Of the four kinds of Dedekind section, the first three are similar

in that each section has a boundary, upper or lower as the case(

may be. A series is “ Dedekindian” if every section has a boundary.
To draw the fourth case into line with the other three, Dedékind
postulated the existence of an irrational limit to fill theigap: he

N
7%

seb up his axiom that the gap must always be filled. ¢

In order to give a precise logical definition of irragiénal number,
the unjustifiable postulation of this irrationdb\imit must be
avoided. It is clear that an irrational Dedekind eut in some way
“represents” an irrational number, and b ’a\modiﬁcation of the
Dedekind definition, Russeil has given o€ Which avoids the logical
difficulty involved in Dedekind’s postulate. '

The idea that an irrational number*must be the limit of a set of
ratios is rejected. Just as ratios~'i\fhose denominator is 1 are not
identical with integers, so these rational numbers which can be
greater or less than irrafi nals, or can have irrational numbers as
their limits, must not b@:(i%entiﬁed with ratios. :

‘We define a new kiﬁa‘of numbers called REAL NUMBERS, of which
some will be ratiodalk and some irrational. Those that are rational
“correspond” t0\Fatios in the same kind of way as the ratio n/l
corresponds £gythe cardinal number #; but they are not logically
the samg?\és;i'}aatios. To decide what they are to be, we observe that
an iI:['E{t;iB‘ﬂ&] number is represented by am irrational cut, and
thatia cut will be represented by its lower section. If we confine
@irselves to cuts in which the lower section has no maximum, the
lofer scetion is called a segment®. Those segments which corre-
spond to ratios are those which consist of all ratios less ‘than
the ratio to which they correspond, and this is their boundary;

* Bince all the fractiong ¢ snch that a <4, and all the fraetions sneh that @ « b
are both lower sections corresponding to the mumber §, ambiguity is avoided by
defining the lower segment to be @ < }.

PaA 4

-,
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while those which represent irrationals are those that have no
boundary. ' :

We now define a (signless) real number.

4 (signless) REAL NUMBER is @ segment of the series of ratios in
order of magnitude.

If the segment has no boundary it is an IRRATIONAL NUMBER, buf
tf 1 has a boundary it is ¢ RATIONAL NUMBER,

In accordance with this definition the real number 3, for example,
is the aggregate of all rational numbers which are less than tHe®

rational number 3 {more precisely 3/1). ‘The irrational numhejd.‘i
is the aggregate of all those rational numbers which are riegative,
and all those which are positive and which have their squares less
than 8, the number ¢ being included in the aggregate,

The reader will observe that the real number whiclt corresponds
to a rational number 2, though logically distigebfrom @, has no
properties which differ from those of 4, and. {38 therefore usually

. denoted by the same symbol. This is analogéusto the use of the same
' -symbol % to denote both the cardinal number  and the ratio nfl,

There is no difficulty in defining addition and multiplication for

real numbers as defined above, In‘fact, the extension of the berm

number to the real numbers is justified by the fact that it i possible
to define the four fundamerital ~6per&tions for the real numbersg in
such a way that the fcrljl.}il laws of these operations are in agree-
ment with those which Rold for operations within the domain of the
.ratlonal numbers,

Given two regl uimbers a and 8, each being a class of ratios,

take any mempbefof g and any member of 8 and add them together
by the la\{gfaﬂdibion of ratios. Form the class of al] such sums

the-series of ratios. We define ;

\Biuilarly the product of two (signless) real numbers is the class
of ratios gererated by mubtiplying & member of the one clagg by
a member of the other in all possible ways.

The definitions all extend to Ppositive and n
and to their addition and multiplication,

It will be seen that arithmetieal operations between two real
numbers are reduced to oper:

ations with rational numbers,

t to be the sum q + 4.

egabive real nhumbers,
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1'6. Complex numbers,

Although complex numbers are capable of a geometrical inter- .
pretation, they are not demanded by geometry in the same way as
irrational numbers are demanded. A complez number means a
number involving the square root of a megative number. Clearly
since the square of a negative number is always positive, a number
whose square is to be negative must be a new kind of number. It
is customary to use the letter ¢ to denote the square root of —1,
and any number involving the square root of a negative numbet,
can be expressed in the form # + 7y, where « and y are real.

The study of algebraic equations led to the introduction..of
complex nutnbers. We desire to be able to say that every qué:.aratic
cquation has two roots, every cubie equation has three‘rosts, and
50 on. If real numbers only are considered, the equatlon @*+1=0
has no roots, and &® — 1 =0 has only one. Every g‘enerahsa.tlon of
 number has first presented itself as needed for sothésimple problem,

but the reader should realise that extensioms,of number are not

created by the mere need of them: t.he\y are created by the
definition, and our object is now to deﬁne €omplex numbers.

Oomplex numbers had been for sewe time used by mathema-
ticians in spite of the absence of any precise definition. Tt was
simply assumed that they woulds obey the formal rules of arithmetie,
mainly because on this agsmmption their employment had been
found profitable. - o)

By choosing one ofdeyéral possible definitions, we state that
complex number is @n ordered pair of .real numbers, Thus (2, 8),
(e, v/2), (& m) ardall complex numbers. If we write 2=(z, ), # is
called the re&{ part and y the w,magmary pm‘t* of the compiex

N\ S

number

(1) Eqﬁmhty. Two co_mp_lex numbers are equal, if, and only if,
their\ 1eal and imaginary parts are separately equal. The equation
F= 'implies that both # =2 and y = 7/.

(11) Modulus. The modulus of 2, written [z[, is defined to be
+ /(22 + 3%). Tt iz an immediate consequence of the definition that
| zi=0 if, and only if, =0 and y=0.

* Although this ferminclogy is now sanetioned by usage, it is very ill-chogen.

The reader must reslise that there is nothing 1magmm:y about y; it is just as
*‘real” as the real part z.

-2
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" (iit) Definition of the fundamental operations.
If 2= (w, 4) and 2 = (<, 9"} we have the following definitions:
Ly e+2 s {e+a, y+y)
(2) ~zis(—o& —y)
(8) z~d =z4+(~2)is (-0, y—¥)
(4) 2.2 is (a2’ — i, 2y’ +&y).
From the definitions it is easy to deduce that the fundamental
laws of algebra are satisfied. A
() The commutative and associative laws of addﬁtiow: \hgld,

nRamely. . &
Cats=gtha; « N

52y ft{mhz)={(an+2)+n=2+25+24 »
o (b) The commutative and associative laws of muleplication hold,
: ' 217y = 232y N\
) 21 (2223 ={2129) 75— Z{Zzg.ga\:
~{¢) The distributive law holds, o\
(a1 +2) 2z3= 2124192 2;.
It ‘will suffice, by way of illus,tfz;ftion, te prove that the com- .
mutative law of multiplication hglds. We have
2123= (&1 — 1Yo, T1 Yo+ ?251)‘= {(@a®s — Yain, Tys + Z1y) = 222y,
Any of the others are p{bved similarly by direct appeal to the

£

definitions. O :

We therefore sefz\blﬁt complex numbers obey the same funda-
mental laws as 1eal numbers: their algebra will accordingly be
identical in fot, though not of course in meaning, with the
algebra of réal numbers,

' _There\lé\ no_order among the complex numbers; the algebra of
comP._lf?z} numbers deals only with equalities; ‘and the bPhl'&Ses
“greater than” and “less than” have no meaning within the

Q?mam of complex numbers. Inequalities can only be introduced

" Toto relations between the meduli of complex numbers, The
modulus of a complex number is. of course a real positive number.
1t remdins to define division: this can be deduced from the
definition of multiplication. '

Consider the eguation BE=2" i (1
where 2= ), A=, y) and ¢= (& 7).



1-6) COMPLEX NUMBERS 21
The equation (1) is
(@€ —yn, an+9E) = (", ),

so thab - af-yn=a, eptyf=y,
and solving these equations for £ and 5, we get
3 -7 __ -1

—(yy +aa) dy—ay T a4

Hence plonded that | 2] 0, there is a unique solution, and Lis
the quotient z'/z.

Tt will be seen that division by a complex number whose mpdditius
is zero is meaningless; this conforms with the algebrg of reaI
numbers, £

It cannot be emphasised too strongly that complex numbers
and real numbers belong to entirely distinet dom}zfus It is cus-
tomary to denote complex numbers whose 1mag1nary parts are
zero by the real number symbol . In orde} 4hat no confusion of
1deas may arise from this, it is essentléi to point out that the
symbol # may have two meanings, (1) ke real number @, (11) the
complex number (#, 0); which of the two meanings is to be under-
stood for it depends upon which g0inain is under eonsideration.

It is customary to define tha complex number (0, 1) fo be 7 ; then
we have

£

£2=£.1'=i1<83—'1’, 0.1+1.0)=(-1, 0).
z 3 ’

In accordance with the above we see that i* is not.the real
number — 1, butthe complex number (—1, 0). To say that ¢2 i 15
equal to —1 mqphes that we are interpreting the symbol -1 m
the doma.]_u'&f coraplex numbers,

The al{bteviated notation leads to no ambignities, for if z denotes
the cmg‘\p‘ex number (z, 0) and v denotes (y, 0),

N Sw+y=(z, 0)+(y, 0)=(z+y, 0),
N 2y =@ 0.0 =(@.y-0.0,2.0+0.9)=(e.y 0).

Thus, so far as sums and products are concerned, complex
numbers whose imaginary parts are zero can be treated as though
they were real numbers. With this convention for the abbreviated

notation it s true that
(z, y)=o+ .
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C Foro - aiy=(z, 0)+(0,1).(z 0)
S =0+ (0.y~1.0,0.0+1.%)
=@ 0)+(0, )= (=+0, 0+ )= (2, y).
: "'-In virtue of the relation just proved, we are allowed, in any

- operation involving sums and products, to treat », y and 7 as though
they were real numbers, replacing 4% always by — 1.

161, Complex numbers are only & special case of the theory of veciors, AR
which- the n-dimensional vector can be denoted by (@, @y, ..., ®,), wheré\tha
* suffizes denote correlation with the integers used as suffixes, and the ngpela-
tion'is one-many, not necessarily one-one, because x, and x, may<be egual
when ris not equal to 5. This definition, with a suitable rule of multiplication,
serves all purposes for which n-dimensional vectors are needed, ™
- "In particular, in the three-dimensional case, we have the definitious
(i) (‘:‘-"1 & 2)*{'—(-‘0’, 9’! 8’)=(-2-‘+.‘Z.", .?/‘H/, z+‘3’)1’m}
(HY (@ 3, 2) . (&, o, Ly=ma' 3y + o7, O
where the right-hand side is not a vector, and i «:’aﬁéd the “sealar product,”
(i) V. (2,9, 2). (&, o, &)= (9 SYfa)e’ ~ 20, g/ ~ ),
whero the symbol ¥ deiotes what is called Bhe “ vector product.”
The components of the vector produgttare the co-factors of i, jy £ in the
detorminant, o
B\ 7, &
ANEs ¥y 2
o\ _z:’ s y', z

£)

The reader ean easily w\ﬁfy that
V- &% 9,8, ==V . (&, 4, 9).(, 4, 5),
which shews that\thie vector produet is not commutative,
it - .t\" ) iﬂ(ls 0) 0)) j=(0! 1} 0)!_ k:(ﬁ, 0! 1)’
then it is\é;g\nljr verified that
RS §=0, jb=0, ki=0; i2ajr_jamy,
the{}faétor {#, ¥, £) then hehaves like #{+ 4/ + 7k, and the fundsmental laws of
: ’"h%gebra hold when applied %o the sum and to the scalar product.
N\ Further information about vector algebra may be found by reference to
apy of the standard works which deal with the subject®. Vector algebra is

of cousiderable importance in the modern treatment of certain branches of

Applied Mathematics and Physies, but it does nob come within the scope
ofithis book.

* For exgmple, E. B, Wilson’s Treatise o Vector Algebra {Yale Univsraity Preas,
1913). :
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- 1'62. Geometrical representation of a complex number,

If we choose a pair of rectangular axes Oz, Oy in a plane, then
a point > whose coordinates referred to these axes are (=, y) may
be regarded as representing the complex number z+14y. In this
way, to every point of the plane there corresponds some one com-
plex number; and conversely, to every possible complex number
there corresponds one, and only one, point of the plane.

‘If we denote (z%+y?)? by r and choose & so that rcos@ =g,
rsin @ =y, then r and & are clearly the rading vector and vectorisl '
angle of the point P, referred to the origin O and axis Os, A

The representation of complex numbers thus afforded is then
called the Argand diagrom. by
By the definition already given it is evident thaﬁ’ rYis the
modulus of ¢, where z =(=, y); the angle £ is ca]led ﬂ'ga ‘argument,
or amplitude of 2.
We write 9=a.rgz. AN
The argument is not unique, for if 8 be a valug’ iﬁ’\fslie argument, so also is

w48 (n=1, 2, 8, ...). The principul value Qf argz is that which satisfies
the inequality —wr <argsga. | o\

A

The reader who wants further mfoi-matwn about the geometrical
representation of a complex ndmber, or who is unfamiliar with
de Moivre's theorem and itglapplications, must consuli some other
treatise*, e x\

It may perhaps bé\worth while to remind the reader that

" theorems on complek mumbers may be readily illustrated by means
of the geometrival.-tepresentation mentioned above, but these in-
tuitions do noﬁ\éonstitute an analytical proof,

The p(mkt Of this remark will be illustrated in the next section.

163, THEOREM The modulus of the algebraic sum of any number
t:gmplem numbers is not greater than the sum of their moduli,

o fix the ideas, consider first only two complex numbers 2 and -
zy: we shall prove that
|.\2’1i22|£i31]+|2'gl ........... desarraaas (1),

* Bee for exnmple Hobson’s Trigonemetry, Ch. xmx, or Hardy’s Pure Mathematies,
Ch. 11
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which is equivalent to proving that
{(m 2 2P+t P <l + y2b + (@24 2t L(2).
Squaring both sides, we see that (1) is true if
@+ 2 £ 2+ g F gtk 219 < @+ gt el gt
2 {(z2+ ) (w4 ¥R,

ie. if t @+ yyeh < {(of + 90 (@ + g, .

.. . o 2 2% f1 3 8 N

ie. if (22 + 33l < (2 + i) (27 + yad),

ieif O<lamn® + y®) (@ + 92 — (e + yagn)?, ¢ \\

e if - 0 % (-‘ZF]_ Yo — p yl)z, \ :s‘.}

which is obvious, since the right-hand side is a perfctsquare,

: In. a similar way, M\\

|31izzi2{3]S|31|+|zz TNV
slal+|ajhpsl.
- Thus, in the case of n complex numbers.\we get

latzt.ral<|a@al+. . 4]z ... (3).

" By adverting to the peometrical ygi)’reéentation, we see that the ineguality
(1) expresses the well-known rostilt that any two sides of a triangle are

together greater than the third, s&

&\
1 .0

™

b

8-

]

Fig. 1

If 2, denote the point (s, ¥1) and 2, the point (s, ¥z), then | 2 |= 08,
]_zg |=0Fy=P; Py and |5, +51=0P;. Heunce (1) is either equivalent to
0Py OP + P, P,
(equality holding only if P, les in OF;, that is when the complex numbers
# ued z, have the sams argument) ; or else (1} is equivalent to

Py P OP 25
8ince [y ~z, [= Py Py, SRS 1+ 0Py,
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17. Conjugate complex numbers.

If z=a +4y, the conjugate complex number 2 -y is denoted
by 2. It is easy to see that the numbers conjugate to z; + z3 and
2152 are % + 23 and 7 7, respectively.

The following three formulae are easily proved:

|s]*=22 2Rz=z+3 Wilz=2—z;
where Rz and 7z denote the real and mmaginary parts of z,

Proofs of theorems concerning complex numbers may frequently,

be simplified by the use of conjugate complex numbers. . The

theorem of § 163 may be neatly proved in this way: <\
21+ 20 = (21 + 22) (25 + 2) O
=nhitah+hotah N

'—=I21'2+2R(3]§2)+ |32_12 ’\\
<laf+2az]+ial 3O
, =(al +[2]), N
and so _ l21 + 2] < |2y| + ffgj\-: O
Also we bave \S
21— 22" = |21} — 2RYA 2} + | a2
> |af —2{2 5] +
=(leit>1za|)?
leading to the important and™usefnl inequality
i‘o';(-* 2l 2 (2] —| 2.

L\

%

N EXAMPLES 1.

2
Zgl

."\‘.

1. If \énﬂ B are two real numbers for which 4;, By, ... are members of
the rempective L classes and Ag, B, ... are mombers of the corresponding
) Q{asé?:s of a Dedekindian section of the rational numbers, prove that the

#elass’ determined by 4, + B, ... aud the class determined by A+ B, ... form
definite section of the rational numbers.

{One member of each class plainly exists; it remains to prove that there ia
at most one rational number whick is grester than every A4;+.5; and less
than every A;+B8;. Assume that there are two such, and shew that “this
leads to a contradistion, ] : '

2. Bhew that the preceding example gives a unigue meaning tq the number
@+ 3. Discuss similarly the definition of the real numher aB- .



96 .  NUMBER fom. 1

3. By taking Bussell's definition of a real number, shew that Example 1
car be modified to give the definition of a+ 3,

[Dedekind defines the real number (when irrational) to be the © cut” which
then separates the L class from the U class. Russell defines it as the lower
segment of the derfes of ratios. Example 1 establishes the existenco of a
definite unique lower segment which is the real number a +8]

4. FProve that between any two real numbers there lie both rational and
irrational numbers,

5. Shew that a parabola can be drawn to pasy through the representative,
points of the eoraplex numbers

244, 4447, 6404, 8416, 10+95 $ "‘z\
6. Prove that, if 2, and 2 are two complex numbers, Ao
) 4 ’0"
] - ap_ x| o
@ laznl=|x].]3}and PARiPAE R

(i) arg o) marge +omg  amg (%) g argz,

N Y T PO T e
7. Discuss the loci on which \J

N\ W

£-a d
| = 2 ( =
réspeetively are constant, where z,ls’a warla,ble complex number, while x and

B are fived complex numbers,
Prove that these lodi cut oqhogonaﬂy

8 If ¢ be a compl§\mﬁnbar such that |¢}=1, prove that the point z
given by

o T LLettA
‘,\ : iy

deﬂcrlbes a ur@le as £ varies, unless |y 1=1
What iNhhé locus of z when |y |=12

9. Prove that 22/ hag exactly ¢ different values,
mtegérs which are prime to each other,

\ Wactorise complately # —(a+1B),

and show that the five values of -
on the Argand diagram,

10, Bhew that

when p and ¢ are positive
represent the vertices of a regular pentagon

leortazt. tom|2)e,||2pa - nofiz),’
provided that | 2| exceeds the greater of 1 a

nd #p, and p is the 3 f
[een s ooy ooy . P18 e greatest o
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" 1. Bhew that the ares of the triangle whose vertioes are the points 2, #;, 2
on the Argand diagram is
3 {(za =5 | i),
Shew also that the triangle is equilateral if
gl tolt b el —rya— g8y — 2y 50, |
12, If 0oy << ay <., << @y, prove that all the roots of
fle=a@ a1+, fa,=0
are outsids the circle of unit radivg [2}=1, ~
13. If o, B are real and « is a complex constant, shew that if N o
B FEm gt ez s+ Bnf =0 ) '\".\
and gf—a% < 0, then the values of 712 lie on a veal circle, or on a;,;traight
line in a special case. N
14, Shew that, if ¢ is real, the equation O
(27 + 722 =2 (b3 +ba) ¢
represents a parabola.

AY;
15, Determine the regions of the z-plane apecif{édfby .

t—a ! ¥
13 ]{l,ml f)l‘;”}’,l,

where a i3 a complex number such that‘j&]'% L

18. I 2 and 2 ave two complex nﬁ;ﬁbers such that |2 | < 1,121 < 1, shew
that there exists a positive constant & {depending only on z and z) such
that, for every point # (other tHan‘z=1) which lies inside the triangle whose
vertices are the points 1, 7 (25}

KO 2k -2,
17. Ifp g, 72 a’m:’all rational numbers, and
O g4 (pr) (g—5)=0,

prove that eij\}ie} (i) p=r, g=3$ or elso () I1—pg and 1—rs are squares of
rational njx@her& Or are zero.

18, ,1?,‘&11 the solutions of the equations

NS ae’+Bbry +oyt=1, lztilmay-+ayi=1
reyrational solutions, prove that both
N —~mB—{a-1) (e—n)} and A/{(ar ~ el +4 (am—bI) (em —ub)}

are rational, when @, b, ¢, [, m, n are rational numbers,



CHAPTER I1

BOUNDS AND LIMITS OF SEQUENCES

21. Introduction.

We now introduce two concepts which are fundamental in
Apalysis; they are (i) the concept of a bound, and (ii) the concept
of a limst, _ ~

- The definition of a bound follows immediately from the defim:
tion of a real muraber, so that it is natur&lly_ the next subjees/for
consideration in a logical order of development of Analysid,_Before

 the actual definition can be given we must examine agapiportant
property of the aggregate of real numbers, or as it 48 sometimes
termed, the confinuum. "‘\

If an irrational number is defined by Dedekind’s method, a
theorem, known as Dedekind's theorem, ,oust be proved. The
theorem can be stated as follows : \N

If the aggregute of REAL NUMBERSi5' divided info two classes
L and U in such @ way that (i) evergmimber belongs to one or other
of the two classes, (ii) ech classjqéniadns at least one member, and
(ill) any member of L s lessMhun any member of U, then there i3
@ number a which has the(property that oll numbers less than ity
belong to L, and all nembers greater than 1t belong to U. The
number a ifself may belong to either class*, :

Dedekind’s theot:qm: expressés the fact that the continumwm ss closed, In
other words, thesréels numbers do not predues any further extension in the
field of numbe:t% LBoal numbers are obtained as definite collectiohs of rational

_numbers (see §1°5), but collections of real numbers only yield real numbers,
not some further extension to some still more general species of number.
2'11:f "i'he Principle of Continuity.
m‘@hé reader will recall that the definition of & real number given

Nip' the previous chapter differs slightly from the one given by
Dedekind+. The concept of a segment of the series of ratios,
which was used to formulate the definition of a real number in
Chapter 1, will now be applied to the continuum,

"* The reader shonl
Possess this property.
1 Bee Bxs. I, note on Question 3; nlso §1-5.

4 notise that the “sggregate of.rational numbers does not
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Imagine that all the real numbers are®laid out before us, and
that we select one of these numbers, say «; it is clear that a
determines two segments of the aggregate of real numbers, a lower
segment and an upper segment: the number a itself is the dividing
number, or the number which defermines the segments.

The characteristic property of a lower segment is that if 8
belongs to the segment, then so do all the numbers less than 8.

Similarly the characteristic property of an upper segment is that -
if B belongs to the segment, then so do all the numbers greater ™
than 8. O\

The assertron that every segment of the aggregate of real fmbers
determines o definite real number constitules the . Prmczpls of
Continutly.

‘When allowance is made for the difference betwﬁen Dedekind's
method and Russell’s method of defining real dunibers, the reader
will see that the Principle of Countinuity is eqﬁwﬂent o Dedekind’s
theorem. For this reason no proof of the. lN;ter theorem was given
in § 21, O\

In the case of a lower segment, the boundary number « has the
following properties: ™

If 2 < &, then # belongs to the segment

If ¢ >, then 2 dehmtely does not belong to the segment.

The number a itself  mgdy or may not belong to it.

Similarly in the c&e\ésof an upper segment, the number @ has the
properties:

Ifz>a then\r belongs to the segment.

Ifa<e tl’IQn # definitely does not belong to the segment.

The m{m}mr o itself may or may not belong to if,

2:8. I‘:Ip\per and lower bounds of a set of numbers*,

W now define two kinds of bounds, rough bounds and exact

bounds. Let § denote any linear set of numbers z; for example,

S might be the set of numbers defined by the relation 0 <z < 1,
If there exists a number H which is less than every number

of the set, then 8 is said to be bounded below, and H is called a-

rough lower bound.

* We shall hereafter use the word *fnumber” to mean *real number,” aa
defined in §1-5. .
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Similarly if there exi#ts a number K which is greater than every
number # of the set S, then § is said to be bounded above, and K
i8 a rough upper bound. :
. The Principle of Continuity is needed in order to give the defini-
tion of an “ exact bound.” If rough lower bounds exist at all, they
form a lower segment, for if H" is less than H, then H' is another
rough lower bound. The aggregate of rough lower bounds thus
determines a definite real number, This real number, which wi
be denoted by m, is the (ezact) lower bound* of the set of numbers.S.

TrgorEM 1. The lower bound m of a set of numbers S has the
properies : g >

(i) m g every number © of the set, (i) m+¢> so'me ohe number
of the set at least, where e is an arbitrary pomtwa«nu*mber as small
as we plecse.

To prove (i), suppose that m > u, (sa.y) Wl@re 2, 18 a member of
the set S, then
m =y + SN
where & is positive; hence o\
m—3 8> @
but m —48 <m and it is a rough lower bound,
Hence the suppositionthat m > 2y leads to a contradiction ; and
this establishes (i). ()
To prove (it), if ﬁ)&lbie suppose that

m + € s every one of the numbers & of the set S
then m-:@ke < every one of the numbers 2

80 Lha.t\m+§e 18 & rough lower bound. This is impossible, for
m+ ¥e>m. This contradiction establishes (ii), and the theorem
s EI‘()VBCI‘{'

" \ ~By 2 similar argument it may be shewn that there is an (ezuct)

upper bound M determined by the upper segment which consists
- of the aggregate of rough upper bounds.

¥

* The word “exaet” has cnly been nged to distingnish botween the two kinds of
bound which have now been defined, In what foliows, m will be called the *lower
bound’” of the set &, and the word “exact” will not be used unless it is desired to
emphasise that the bound in guestion iz not a rough’ bound,

1 The reader should be familiar with this modas of proof: it is frequently ueed in
- Apalyeis
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Turorem 2, The upper bound M of a et of numbers S has the
properiies

(i) Mz every _mzmbe?‘ & of the set, (i) M — e < some one number
of the set at least.

The proof, which follows the same lines as that of Theorem 1, 1s
left as an exercise for the reader,
It follows directly from the properties of M and m that

M2m,
. 23 ‘\
23. Limit points of a set of numbers. . A\
Before a formal definition is given, it may be said by ﬁray of
general descrlptlon that a “limit point™ of an mﬁmi:e set 1s a
number in whose immediate neighbourhood is cohcentrated an.
indefinite humber of members of the set. Comsideér, for example,
the aggregate of points representing the numbers

P L1 Lag)
I LRRT n,“....

In any 1nterval however small, e:ftendmg from the origin to the
right, there is an indefinite nmfnber of points of this aggregate.
The origin is therefore a liniit point, for an indefinite number of
points of the agprogate axEclustered about the origin. At a limit
point the concentratipny 6t \he members of the set has the property
of endlessly great derkiby '

We now gwe a forinal definition.

The point ¢ is w Timit potnt of an infinite set I* §f, however small
¢ may be, there'is a point of the set E, other than a, whose distance

Jfrom ] \Eess than e.

If ﬁhere 1s one such point within the interval (o —¢, a+¢) there
must be an indefinite number; for if there were only n of them,

a a, were the nearest to «, there would not be in E a point
other than ¢ whose distance from & was less than |a—a, |1,

* The letter E, the initial letter of the French word ensemble, is often used to
denote an arbitrary set of points. The German word corresponding to aggregate or
get 18 Menge.

t When 2 is & complex number, we have already defined the meaning of | #].

x be resl, the syrahel || means simply the positive (or absolute) value of =.
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2:31. WEIERSTRASS'S THREOREM. FEvery bounded infinite aggregats
has at least onie lmat point,

Mo fix the ideas, consider only a linear infinite set of points
included in the interval (@, ). Take any point ¢, such that a < c<b;
then singce (a, ) containg an infinite set, therd must be an infinite
get either in (@, ¢} or in (g, b} or in both. Suppose, for definiteness,
that there is an infinite set in («, ¢}, 'The set of points & In (a, o),
such that none or only a finite number of members of this infinigs,

- get is less than &, is bounded above by ¢, so that ¢, and every number
greater than ¢, is a rough upper bound. The aggregate of. roligh
‘upper bounds determines a unigue number £, the upper beund of
the set. The number ¢ has the properties, - N

at #;

& zevery g, S
& — e < at least one a; b

hence in any interval (¢ —¢, £+ ¢) there aiug\\fuf)ints of the infinite
set in (g, ¢) other than & The number £s therefore  limit point.

24, The concept of a function. . W/

A function is merely a relation,ﬁe’éiireen realnumbers. If z denote

any real number, since “the sgudfe of #” is the relation between

. a* and #, the phrase “ the gquare of z” implies the existence of a
function of 2. The concepbof a function of the real variable 2 will
be more fully discﬁ‘d’in the next chapter, but for our present
needs the conceppiof ' function of the positive integral variable »
must be understend.
Let us cop\si&er the sequence of numbers

; : ) 81, 82, 83, vy 8p, ...,
15 be'i.ng\understood that some law exists according to which the

ge.qel"él term s, can be written down*. For example, if 5,=2x +E,
7

\\%é see that '
=3, sa=4%, s=6}, s,=84, ....
Since, when n assumes in turn the integral values 1,23 ..

. there is & corresponding set of numbers 81, 82, 83, ..., 8, Ay be

_' The law of formation need not be e
engbles us to chizin 4, for a given n by
{s,} may be defined by
nated &t the nth digit.”

embodied in any aeplicit formula whioch
direct calonlation. For example, a sequence
the statement that # s =the decima] fraction for /2 termi-
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described as a function of the integral variable n. Such a function
may be denoted by ¢ (n), so that all that is implied by the equation

y=¢()
is that as n assumes in turn the values 1, 2, 3, ... there 18 a corre-
sponding set of values of y, 8ay v, ¥a, ¥s, ..., Where

y1=¢ (1): Y= ¢(2)! = ¢(3), e
The notation {s,} will be used to denote the infinite sequence of

numbers
81, 82, 8y sars Bpy aeus N
25, Limits of sequences. ' : PR D

The limit of a sequence {s,} as n increases 1ndeﬁmte1y Is an
extremely important concept which needs to be discussed in some
detail. Two phrases are of constant use, and they, muéb be under-
stood. They are,

(1) “For all sufficiently large wlyqs&af n,”
(2) “For values of n as large aswe ploase.”
We now assign a definite meaning to, dach of these phrases.

(1) Suppose-that it is possible to. find = fixed 1nteger » such that
whenever n2v the number s, possesses some definite -property.
It need not possess this proPerty for every value of n; all that we
need to know is that it possesses this property for every value of =
as soon as n exceeds g fixed integer ». If this is the case, we say
that the property holﬂs\far all sufficiently large values of n.

To illustrate thi§, eonsider an example of the kind in which this
phrase oceurs guite frequently in the theory of limits of sequences.
If ¢ denote @n arbitrary positive number which may be as small
a8 we ple@e\*, then we can say that, if s, = 1/n,

' . ",\ “ g < €, for all sufficiently large values of .’

Th:ls\ is easily seen, for 1 /n < ¢ whenever nzv, if » is the greatest
1
\integer in 1 +2

The reader to whom this idea is novel, is advised to consider
the above example in greater detail by assigning different small
numerical values to e, and calculating the corresponding values of ».

* The eymbol e will be used in this sense throughout the book. In futare, there.
fore, ¢ will be uwed without the shove deseription being repeated each time.

A 3
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Two facts should be noticed, (1) that » 1s always an integer,
and (2) that the value of v depends upon the chosen value of e,
"The latter statement is especially important, and it must be clearly
understood by every reader who wishes to acquire a proper grasp
of the theory of limits,

To take numerical examples, if

C e=01, »=11:
e=001, »=101;
e=00001, »=10,001:
and so on, O\

We shall often write » () to indicate the dependence(®f*y upon
the arbitrarily chosen value of e. It is to be emphasised that e is
quite arbitrary, and to each chosen value of ¢ thgr&?wiﬂ be a cor-
responding value of ».. AN

(2} A property is said to hold “ for values\of 7 as large as we
please,” if it holds for at least one vah;ej%f'n greater than any
assigned NV, however large. The idea ig porhaps best comprehended
if we think of an attempt to prevent gomie property holding for {s,}:
We endeavour to assign some large, value I of n, such that when :

- n2N a certain property of {g}fails to hold. If no such value ¥
‘of % can be found, we say thué the property holds “ for values of n
as large as we please” o
For example, it is ‘trae that (— 1) is greater than zero for values
of n as large as we pléase, for no matter how large N may be, so
long asnis an gven integer (—1)*> 0. Thus no integer N can be
found so largd/bhat (—1)* is not greater than zero when n > A.
The readqg\:should observe that we could not say that (— 1) >0
for allxsju“ﬁciently large values of n, for whatever value is selected |
e

for vy ety odd integer which exeeeds » renders the inequality
(=1 >0 untrue.
"\

Q"

mﬁ*ﬁl, Upper and lower limits of a bounded sequence,

Let {s,] be any bounded sequence, H and K& itg lower and upper
bounds. Any real number 4 which is such that '

4 <5,

for all sufficiently large values of %, is called an wnferior nwinber
for {sp}. Bimilarly & number B which is such that

Bzs,
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for all sufficiently large values of n, is called a superior number
for {¢,).

A number ¢ which is such that (< s, for an Infintty of values
of #, and also € > g, for an infinity of values of », 13 called an infer-
meditte number.

Clonsider the aggregate of all superior numbers. It is bounded
below, for none of its members is less than X : this aggregate
therefore has a lower bound which is denoted by A.

Similarly the aggregate of inferior numbers has an upper bound
which is denoted by A. _ N ‘
The number A is called the upper limit of the sequence {g,} a5

n=>oc, and the number A is called the Iower limit of {s,] as h» 0.
Tt is customary to write ) N
A= lm s, rA=1li ,
77— 0 " nlL-:-nE % ."‘;\\
or more simply, by omitting “n—,” ’
lim s, and lm sy, )"
It is clear from the mode of definition, 6f=\the numbers A and A

that W W
H<hg AXE.L

We have also the following ~,dlé‘rnentary properties, stated for
convenience in the form of thearéms.

TureorEM 1. The numligns A and N are the upper and lower
bounds of the aggregate ofnintermediote numbers, if any such exist.

Since A 3 A therg ate'two cases to consider.

(1) If A =2=dythere can be at most one intermediate number
and there is nothanig to prove. ' '

(2) Tt A=, since, by definition, any intermediate number € is
less thg&r&aﬁy superior and greater than any infericr number, we
have %5
) ArgOg Al
\ If % < O < A, then € must be an intermediate number, since it
is clearly neither superior mor inferior. Hence there are inter-
mediate numbers as near as we please to & or to A.

THEOREM 2. Given e, then

(1) &x< A+ ¢ for all suficiently large values of n, and
(i) sn > A — e for an infinity of values of n.
3-2
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For, the number A ¢ is a superior number, and A — ¢ is either
intermediate or inferior, The result is then an immediate conse-
- quence of the definition,
Similarly we have
THEOREM 3. (i) s, > A —¢ for all suficiently large values of n,
, ' (1) sp< N+ e for an infinity of values of n.
We riow give two illustrative examples.

Ewample 1. Let P {%— %} . )
By forming & table of values ) \ N,
w1 23] e s e ] s [ab] s
w |3 | -n] s a | -] 0P |

we see that, as soon as n exceeds 4 svery value of s,\ied between —%and
As n increases indefinitely, 4/ tends to zero, and the Ximit of s, as % »w is
either —4 or 4 according s = ranges through od{i ©r even values, Henca

A= —-é' and A’;"g.’

S, A 8§y A 5 ,"".. 5

1 ) 1 3 s N 1

A e
. 2

As n incresses through od@values, ¢, tends to the value -}, and we ses
that the points repregentiflg values of 5, when = is large and odd cluster
about the point —3 oh\@a right. Bimilarly the points representing values of
8, woen # iz large and even cluster about the point § on it left, The upper
and lower Hmits Of ;4 bounded sequence therefore both have the character of
limit points of :a;set as described in § 23.

It is evi(ken. in this example, that with few exceptions, the points repre-

~ senting k{lués of s, lie within the interval (A, A). In fact, for this sequence,
the odly‘points lying outside this interval ave those representing s, 5, #s
and.g;coincides with A '
w\: ﬂ'. is however possible that an {nfirite number of terms of the sEqQuence
Nty lie to the left of A and to the right of A. This is illustrated by the
following example, o
Example 2. Let a={— (1 + ;%) .
The firgh fow terms of thissequence are

-2, %r “‘3; %: ""g‘s ELLE]
and evidently A=~1 and A=1. In this case an infinite number of terms le
to the left of A and to the right of A and no term of the sequence lies berwesn

i
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» and A. It is not therefore necessary that there should be only & finite
number of terms of the sequence outside the interval (A, A)

In virtue of Theorems 2 and 3 above, s, << A+e and g, A~ e for all suffi-
ciently large values of n, o that at most a finite number of terms of the
gequence lie to the left of A —e and to the right of A+«

2:62. The unique limit of a sequence,

If the upper limit coincides with the lower limit, so that A =2,
their common value I is defined to be the unique Limit of the
sequence {s,} a8 n~> ., The unique limitis often called simply™\
the limit. When the sequence {s,} has a unique Hmit it 1s sald 0
converge to that limit. Symbolically this may be expresseﬁ in

either of two ways, _ Lo
(1) lm s, =1, N
72— D
or (2) sp—>lasn—>ow, ,'~.\‘

Since A — 20,1t is a direct consequence of<the above definition
that the necessary and sufficient condztwnxﬁ}r the existence of w
unique finite limit (convergence of the seq;we}we) is that

*A-RA <'e, .
for every arbitrary ¢ > 0. RN

Thus, when a unique limit emsts the lower bound of the superior
numbers is equal to the uppér bound of the inferior numbers
(A=n=10), and so everysnbmber greater than { is superior, and

every number less than(?ys inferior.

2:63. Theorems Qn\umque limits,

A different deﬁmtlon of a unique limit is frequently given. The
sequence {sﬂ}\%s vsaid to tend to a limit 1, if, given e, there evists a
number. yle)ysuch that

,\\ len—t]< e

whenever n 3z v{e)

e 2 ys immaterial which of the two possible definitions is adopted,
\blli; whichever one is selected as the initial definetion, the other
Tust be proved to be a consequence of it. Since we have taken as
our initial definition the one given in § 2'52, it is necessary o prove
that the definition just given is equivalent to the one which we
have adopted. This is done in Theorem ¥ which follows.

The reader is advised also to adopt the second definifion and
then prove as an exercise that the first definition is equivalent to it.
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Tarorem 1. The necessary and sufficient condition that the
sequence {s,} converges to a Limit 1 is that, given e, there caists a
v (€) such that :

: |sn—1|< e
whenever n 2 v (e,

(@) The condition s necessary, for if s, -1, then every number
greater than { is superior for {s,}, and every number less than !is
inferior for {s,}. Hence

I—e<s,, for nm;
=

I+ e> 6, fornzuw. R\,
If# v = max (1, v), \ O
l—e<sy<l+e fornzy, “'(»:"
that is to say  sa—lj<e fornzs ALY

(&) The condition is sufficient, for ssupposé\phat fsn—E] < e for
727, then { — ¢ is an inferior number forx{.@}{ but since e is arbi-’
trary every number less than I is andnferior number for ls,).
Similarly every number greater thamiis a superior number for -
the sequence. Hence a unique lingip Sxists.

TEEOREM 2. CAUCHY'S GENBRAL PRINCIPLE 0F CONVERGENCE.

The necessary and suffigignt condition Jor the convergence of any
sequence (s}, ts that cgr’fiés-ponding to every arbitrary ¢ there exists
an wnteger v, such th{:k 4

\ [8 — 8oup|< e
“for all positiu?.\’i?itegml values of p.
(@) The,contition 1s necessary, for by Theorem 1, if s, tends to
a limit {swhenever n 3 », :

A Von—1| < de
In\particular we have
ls=l<te, |sp-il<ie
\/ Now is,—£+l-—~s,+p|g|s,,—l|+§E~~s,+pk
<}etde=e;
_ that is, ' |8~ Sup ! < &,

¥ maz (», v} means the greater of the two aumbers » s0d »;. Bimilarly we use
min (v, ) o Jenots the lesser of the two numberg coneerned. Tha symbolism
applies equally well to more than twe numbers i thus max (g, b, ¢, d, .., &} mesne -
the greatest of the numbers a, b, ¢, d, ... » B '
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(&) The condition is sufficient, for, if |8, — 8y4p | < e for all posttive

integral values of p, we have
5, — €< Bupp < ST E
that is 8, — e is an inferior number and s, + € is a superior number
for the sequence {s,4,). Hence
A—Ag(s,+e)—(s,—e)=2¢;

and so, by remembering that A—X2>0 and that ¢ is arbitrary, it
must follow that /

A-r=0.
Qince this is the condition that a unique limit exists, the gbfi
ciency of the condition is established. O

ol
P
<

2-54, TTnbounded sequences, o

In the preceding sections only bounded sequences hav.é“‘ﬁe;n considered,
and the upper and lower limits of such sequences must kafnite. 1t is some-
4imes convenient, though not indispensable, to exteué\t‘he concept of upper
and lower limits to unbounded sequences. In oltglﬂi:t.o doe this it i3 necesaary
{0 say that in certain cases A= -+ and A= 3 S0 far we have assigned no -
meaning to the symbel # o ” standing alone, andh up to the present the yyrabol
has been regarded as meaningless except sehert 16 has occurred in the notation
‘e o ” which is merely & conveniend abbreviation for the phrase “= is
indefinitely increased.” A precise dgfinttion of what is meant by the state-
ments A=, A= —cc ig given holow, but the reader should be able to see
the need for their employment in ‘the following examples, |

The sequence defined by tﬁa relations

Y \\ San—1= 1R, Sm=% {r=1, 2, 3-...}
is clearly one for which*) exists and has the value 0, but unless we say that
A= 4 o We canngh :méign a value to A,

Again, if theléeiiuence go=(—)"%n
ja to be c}séai ered as possessing upper and lower limits at all, we must say
that (LN '

'r.; h=—wm, A=-tw.
. Ti;i\e 'rea,der must clearly understand that the symbol “e” and the terms
\a;?y\'mire, infinity and fends fo infinity have purely conventional meanings,
Phrases in which these terms are employed have a meaning only when by @
definition some suitable meaning has been assigned to them.

When we say that a number % tends fo infinity (n-=o ), We are using a
short and eonvenient phrase (or a still shorter symbolical expression) to ex-
press the fact that » assumes an endless sequence of values whick eventually
become and remain greater than any arbitrary positive number, however

large.

]
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For this reason the reader is advised not to use the concept of X and A
being suppesed infiriite until he fully realises what that concept really means.
The precise meaning to be attached to the symbols A=, A= -~ is con.
tained in the following definitions :

(i) A sequence {s,} may be such that, when # exceeds v, inferior numbers
exist and have a finite upper bound A, but superior numbers do not exigh
because an infinity of valies of s, can be found which exceed any arbitrary
positive number &, however large. In thds case N exdsis and i3 Senite, and we
sy that A=a, .

{if} Stmilarly {s,} may be such that, when n exceeds v, superior namberd\ -
exist and bave a finite lower bound A, but inferior numbers do nat oexist
because an infinity of values of s, can be found which are less theg any
arbitrary negative number — 4, however large G may be. Fn thts caf@\N enists
and 18 finite, and we say that A= — wo , A

(iif) Sequences {s,} exist for which there are neither inferjp(r nor superior
numbers, 80 that X and A do not exist finitely, but there g Q\'vzlys an infinity
of values of s, which exceed any arbitrary large number ¥, and an infinity of .
values of s, which are less than any arbitrary numben'— &, 7 s 2his case
whieh is rapresented symbolieally by the statements NAa~w, A=,

2:65. Divergent and oscillatory sequpﬁés.
When the sequence {s,} does not, ¢etiverge to a unique finite
]i_mit, there are several'possibilitj&tgs which will now be considered.
(1) Divergence. If the termg\of the sequence have the property
that, however large the pogitive number & may be, an integer »
can be found such that K
) s> 6
whenever n exceeds} there{s,] is said to diverge. This may be
expressed symbolically by writing
NS
\ Sp==00 88 ne»on, )
Simila{y,\if an integer » can be found such thas
,.s’\ 311, < - G
whe;\leﬁ;er_n;v, then {s,} diverges. This may be expressed sym-
bolieally by writing
N/ _ Spm* - 00 a8 newoo,
In both cases [sa) 182 divergent sequence, and {s,} may be said
to diverge to w0, or to diverge to — oo,
(2) Oscillation. When the sequence {s,}, while not convergent,

posscsses a finite upper limit and a finite lower limit, then it is
sald to oscillate Jinitely, '
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For ezample, the sequence s,={—- {1 + %} oscillates finitely, for A=-1,

Ae==1,

Now that the mesning of the expressions A =0, A= — o has been precisely
defined, a scquence {z,} for which A and A have these values may be said to
oscillote infinitely. Infinite oscillation does not differ much from divergence,
and some writers use the latter term to imclude infinite oscillation. The
differcnce is clearly seen by considering the following examples:

If 3, =n? {5.) diverges, and s, = asn-=w.

If s,= —n%  {s,} diverges, and sp=~—® as n-» .

o If sye={—~ )02, {s,} oscillates infinitely, the even terms increasing and the!
odd terms decreasing without limit. In other words sg,—~ ¢ as m—» o, and
Sppq 1= =0 A8 M-, .\“\
256, Theorems on limits of sequences. QO

For the sake of brevity the following notation is adopted If
{s,} converges to a unique limit, say s, as n 1s indefinitely increased,
we shall write simply s,~»s, leaving the phrase 83 % tends to in-
finity” to be implicitly understood. Also the word “limit” will be
taken always to imply “nnigue limit,” unless/Phe contrary is stated.

In §253 we proved two fundamental! t}}eorems the second of
which, the general principle of comevyewce, is of immense theo-
retical importance. It gives a meansfideciding whether a sequence
tends to a limit or not, without an§ previous information concerning
the value of the limit. N\

Although in elementary work the limit thecrems which will
now be proved may, ba employed more frequently than the
“general principle,” “he reader must not underestimate the im-
portance of the géneral principle on the grounds that it seems to
be rarely usedh Most of the abstract theorems which involve the
conecept of &’hrmt depend for their proof upon the employment, in
some foruf.or other, of this important result.

Proofs“of the fundamental limit theorems will now be given,
ng;égin by proving two lemmas.

\Leyma 1. 'f | 8w —s| < ke for nzv, where k is a positive con-

stant, then 8,—-s.

Replace ¢ by ¢/k, as is clearly permissible, since e is arbitrary and
e/k is positive. Thusif ¢ = ¢/ we can find an integer », depending
on ¢, such that

|8y —-8|< ke for nzv,
that is lsa—s|<e for nzw;
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and, since % is a constant, » is a function of ¢, so that s,—s by the
ordinary criterion,

The reader may be inclined to regard the above lemma as trivial, but i
has been proved for a special reason, In the proof of T'heorem 2, § 233, the
first inequality was taken to be Js, -1 [ <t4e The reason for the choice of
#¢ was to ensure that the final result should read | =2y, p|<e Although
such a procedure is frequently adopted for the sake of artistic elegance, the
lemma shews that it is quite unnecessary, If ¢ had been chosen at the outset,
the final result would have read S — 345 | < Be, which would do just as well,,

The reader should observe that it is rarely possible to decide heforehatid
whether e, or ke, or }e must be chosen first, 50 as to be left witl et the
final step of the proof. The lemma shews that this artificial choiqe.éf“‘sﬁme
fraction of « iy unnecessary. « \J

L ¥
ool

Lemya 2. Bvery convergent sequence ts bounded, ~‘
If s, and s is finite, ther when n 3 », .“’:\\'
 S—e<s<Ste O - .
Let g and G be the least and greatest”:ﬁa}}ectively of the v—1
humbers PN
. 8, S, ...,s,’,;l..’
If b= min (s —¢,g) and K = mpi s + ¢, @), then
_ h‘g:;g;'g Ho o, ererians (1)
Jor all values of n; in other'-w;)fds {8a} is bounded.
Corollary. An equival}gt inequality to (1) above is
' \ |82 | < M,
where M is a cox{g{',stnt Plainly M = max (/% |, | H|).
2:561. ’I‘h.@\ﬁﬁ:ﬁé‘lamental limit theorems,
IF s,fs—x\é’ii-fnd ta=>1t, where s and ¢ are Jfinite, then
AV O sttty
\"js; o/ (2) saby—>st,

1
(3) 3—-—*%, 80 long as s+ 0,
Proof of (1), We have

Isn"*é‘[(eforn;‘;ul,
and

ftn—tj<ef0rn;ys;
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now (.;ﬂ + )= (8+ ) ={(sa—8)+ {fn—1),
hence f(su+ﬁ,,)-(s+t)|gisn—s|+|tﬂ—tig2e,
for m » » = max (v, v2). This proves that s, + f, = s+1, by
Lemma 1,

First proof of (2).

'By Lemma 2, [s,} and {t,} are bounded; hence there isa positive
constant M such that, for ali values of n,

isaf< M, jta|<M. - O
If we write § for [s] and T for |t} then A
{
Sty — 8t = 8p (ba — O+ £(8, — 9), o\

hence |sﬂtﬂ-—st]<M|t,,—t|+Tisﬂ—s < (M + 1) gl
for n v, Thus, by Lemma 1, spt,—-st.

A
v

&
Second proof of (2) ¥
We can write O
2?\
Spta—st=(8,—8) (s —~ D) +1 (sﬂ:Qs).+ s{ty — 1),
so that, for n 2w, PAY

| 8atn— st| <e. e+Te+S€,
and, since we may suppose that ¢ k:l when % > v we have
| $ptn — stJ«< (1 +T+8)e.
Hence, by Lemma 1, tthheorem follows.  _ .
Proof of (3). e) :
Since we mush a§s\ume that* s+ 0, we may write |2|=28,
where &3> 0. Smc@, s,~=§, a number » can be chosen so that,
when 2w, N

p 3

x’\"’ |sn—8|< 8,
and a.ccc)\dmgly, when n2wm,
\'\ - | 8n| > 8.
~ —
“\Now LIS un
SV s & 8.8,
1 1 |s—sn |8 5]
and 55T el < 256 -

* The readar should observe that the condition that s + & is necessary, for 1fs
has no meaning when s=0, If s._lJ 15, ma.y not even possess a unique limit; for

ezample, s, ={ " —~a-0 but —{ o, and this oseillates infinitely,
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for values of n which exceed, »;. A number 1 can be found guch
that, when n> v, '

[$a—s8]<e;

so that if y = max (p,, V), 88 SOOD a8 1 > v,
1 1. e
8, &) 262

hence by Lerima 1, since 21? is a constant, the theorem follows. )

N

257. Theorems on upper and lower limits. oA\

Let {s,} and {¢,} be two bounded sequences, and let theit upper
and lower limits he respectively denoted by A, ; Ag A set of
general limit theorems applicable to upper and ldwer Limits can
be obtained, but the proofs of some of these «4fe) rather difficult,
and there is a great variety of results. O

The reader should observe that the relatiohs which hold between
upper and lower limits are not the samead the corresponding ones
for unique limits. : O :

It is not proposed to deal exhauaﬁ{?ely with the relations between
upper and lower limits*; it wil]t g}ufﬁce, by way of illustration, to
prove two of the simpler resqlts. Several others have becn set as
examples for solution at thevend of this chapter,

THEOREM. o proye ‘Q&Q&

(@, T 8, + Tt 2, > Tiin (s, + ¢,),
- Xy Lim s, + lim ¢, lim (s, + ¢,).
Proof of (a)”

. SNV e . .
Since \hw's, = A and fim tn=A', then, in virtue of Theorem 2,
- §251, there is at most a Anite number of values of 2 for which

O > AFde T (1),
Sand at most a finite number of values of n for which
n}A’-'-—%E.. .......................... (2),

hence it follows that

* For fuller information the reader shonld conguly Camthéodory, Vorlesungen

@iber Reelle Funktionen {Berlin, 1918), §§85-95. © fortunately the nuthor is unsble
to refer the reader 1o any English text-book which la fully with this topie,
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for at most that finite number of values of n for which the in-
equalities (1) and (2) hold.

Since A + e is a superior number for {s,} we have

sngA+te
for n 2 »1, and since A’ + }¢ is a superior number for {f,},
ths A +1e
for 7z re. Hence for n > max (v, 1) _
Sut b€ AFA +e i (4)
It follows that \\ ~
G (s, + L) S A+ A+

and since e is arbitrary, the inequality (a) is establshed.

The proof of (&) follows the same lines, and ig\left as an exercise
for the reader. : A

If a unique limit exists for both {s,} a,gc( {h}, the above theorem
reduces to the fundamental theorem (L)of § 2561

S

268, Monotonic sequences. N

A very important type of gs@iieflces will now be considered. Let
{s,} be any given sequencesthen if either

e 2 LR T SRS e ———— (1),
or ‘\§1;sza...>sﬂ;... ..................... (2),

(8] 18 said to j:n\‘é Wonotonic {monotone). Sequences of type (1) are
said to be mienbionic tncreasing, those of type (2) are said to be
monotonig-decreasing.

A sequénce is said to be strictly monotonic, if the equality
siggg?in (1) and (2) are not allowed. The sequence (1) may be
&8t 1o be tncreasing in the wide sense, but if the equality signs
\are disallowed the sequence is said to be tncreasing in the strict
sense.

TuroREM. A monofonic increastng sequence tends to its upper
bound.

Let the upper bound of the sequence {so} be M; then either
(i} M is finite or (i) M is infinite,
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In case (i) we have

spg M forall values of m.ooviiiieieiniiinnnn, (3),
8p > M — e for at least one value of n;
suppose that s.>M—e,
Since the sequence increases, for x> » we have
8p 28y, I
80 that : Sp>M—c....... e rereerteereraeae (4
By comparing (3) and (4) we have, for > », O\
’ M—c<s,<M+te o\
which implies that, as n— o, ~\ hy
Sp= M, ) \‘ }
In case (i) M is infinite. This means that, giv'ér} any number
| ‘o s> O
for at least one value of n, say n =1y, so thiatk
8 > G NV
Since {s,} increases we must havs, for n > »,
| DG,
in other words 'sﬂ-)-ao ;

Similarly it may be proved that ¢ monotonic decreasing segufmce“
tends to 1ts lower bound,)

The proof is left A8in exercise for the reader.

"26. An impgri.é.ﬁi; limit theor__-_fam. —

“ F T
To 'provei’tkat if sy-a-l, théﬁ'ﬂw- teot o —[.

MWaite'sy =1+ t,, and we have t6 prove that if fn—0, then so
does ity + b + ... +8;)/n. _ . '
“\'Divide the numbers t, fa, .00, £, into two groups:
. (1) 31;32, “avy tl:! (2) tk—l—l: tk+21 e ;tﬂ' .
The number % is a function of » which tends to infinity tmore
slowly than n*, in other words we suppose that k—o but
kin—0,"

* The number \/n is & number which tend

8 to infinity more slowly than #,
Cfory/n— o, bub (\/n)fn =0 a8 B, . Y Y



2-6] COMPLEX SEQUENCES AT

However small ¢ may be we can find a number » such that
every term in group (2) is numerically léss than e when nzn,
T

i)
there being n — & terms on the left-hand side.

hence

< e, — <§
T

Let T denote the greatest of |#1], {21, ..., then we have
t1+tg+...+tkl{f£_f’f_(é
n | 7

and since k/n—0 as n—cc this number £T/n can-be made lesd
than e for n»vs. Thus ()

bt ..+,
7

bt .. FhHis

7
no Y

+ we(1)

1]

é‘tlﬂ-tﬁ..ﬁr_,tk]

< 2e | m'\'\ 7
for 72 », where v =max (4, vg). The theorem is thérefore proved.

Instead of making & a function of », we can prove {he‘theorem by choosing
a b such that |7, | < ¢ forallv> & Nowlkisg ﬁf@gci?‘number and we shew in
a similar way that each of the terms en the yight-hand aside of (1) is less
than e. The details of this alternative nethoth-of proof are left as an exercice
for the reader. .~.’: “

al

27. Complex sequences. _»

For complex sequences dnferior and superior numbers do not
exist, nor do upper andgwer limits. In fact there is no general
theory of complex seq@eﬂces, and they can only be treated by con-
sidering their realchnd imaginary parts separately. A systematic.
theory of convqrgé}xfcomplex sequences may however be developed,

for which theyfellowing inequalities are fundamental :
'S X i .
AP ojerilslol+ iyl

Sim{é ,i:ﬁ +14y | =/(a® +4?), the first inequality is obvious; and since
{é{x’l, the second depends on the theorem in §1-63.
- VDeriNiTiON. The sequence (3.}, where s,= oy +1Ta, 15 said fo
converge to the limit s=o+1it o [an) converges to o and [ra}
conyerges to T. o :

We write o, + 77y ~> ¢ + o7, which implies that both ¢~ o and

Tp—> T. !
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TreorEM. The necessary and sufficient condition that the sequence
{8n}, where s, = o + 11, should converge to @ limit s, where s = o + ;-
18 that for n2v, |8, —38|< e

(1), It is necessary; for, if s, ~> 5, we have

low—a|<e for noy,
and . | Ta— 7| <€ for 232 v,
so that, for n > max (w1, vg), ~
Jsa=s]=|outina= (o i) <l onmo| 4] ra 7| )
' < 2e, ’\'\ ’
(2) It is sufficient, for, if, when n 3 v,
[s,,—s]< €, '\\
it follows that, for z >, N
|0'ﬂ—0'ig|.5‘ﬂ—gi<'s,\\:
" and ]T,,-—'r|g[sn-—8’}%\é.’
Hence o — o and 7, ~ ; that is 0 say the sequence {s,} con- _
verges to a limit s, \\

a3

- 271. The general principl;e:"r:»f convergence holds for complex -
sequences, ’

When {s,} is eom lgm;x\ the statement of the general principle .
assumes exactly the‘sme form as in the enunciation of it for real
sequences in § 2:55) ' -

The proof fellows at once in virtue. of the inequalities

|“T~i:’>°'v+pl
\Q{n’— Toip]
' The:flﬁta.ils of a formal proof are left to the reader.
~(The reader should observe that the criterion for eonvergence
\and the general principle of convergence for complex sequences
are precisely the same as for real sequences. This is because in the -
statement of these theorems only the moduli of the terms appear, .
and the modulus of any complex number is real and positive.
No inequality can hold between complex numbers, so that the

preceding theorems exist only because they involve the moduli of
, the complex numbers. concerned, '

gl8'—3v+pl€|0'p—o',+p]+IT,—TH_PI,
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2:8. An important limit.
Tt will now be proved, on the hypothesis that, when @ is real rmd
positive, the series

s=1+z+0 +31+ ver srenseesnsernienes (1)
18 convergent, that the limit of the sequence
I n
Sy = (1 +ﬁ)

1s the sum-function s of the series (1).
By the Binomial Theorem for a positive integral index, ¢y

B e o e o n{r—1} n{n-1)(n— 2) £34 D
=(147) = e T T L B e
(1F%) (1_'.*1'5) (lmn \\
=1+4+x+ 2r' a® 3t 7L

the series terminating since n is a positive infeger.

We observe that (i) each term incgpases as = increases, and
(ii) 28 » Increases new positive terms Are added. Hence {s,} is
monotonic increasing, and therefore tends to its upper bound.
Thus if we shew that {s,] is boundefd above, the limit sought must
be finite. N

$ﬂ

a2
Clearly sn<1+x+9,+ et

and, gince every term\x§ pomtwe, this is less than the sum of the
infinite series* s5,.Qn the hypothesis that the series (1) eonverges,

s must be fime, \so that
’,\ 8, <8,
from thh:\“We deduce that
< B Sp €8 vrreevrnnirarnrnaniaenes a(2)
_d a0

" If‘p be fixed, and » > p, we have

y
4 1 -1
: ()., =075
3 7
sp>ld o+ ———at+ ...+
21 p!
* Although the proof is simpls, the reader should realise that the above statement
requires proof. For a serias of positive terms the sum to n terms, s, increases to
the Jimit #; henoe s must exceed the sum of any number of terms, taken arbitrarily,
in the series, for = ean be chosen large encugh to ensure that ¢, includes all thess

terms. See §§ 2°58, 5'11, 512,

aP;

P A ’ +
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(1-2) (1-5) -~ (1-229)
lims,2 limjl+as+ 224+ —_ 7|,

H-mmt0 Heamop 21 . r !

so that

The only restriction on p is that it must be less than n, so that P~
can be as large as we please, hence

O\

2 B
lm 8,21 4045 4.0+ o,
however large p may be. It follows that A
lim 8,25 ........ e (8
. By comparing (2) and (8) we have ' n ™~
© lim s, =s o\ S
i v’

Note 1. The sequence s, is a function of » onl;g,’.%r’ throughout the pre-
ceding proof # is regarded as having a Jiwed rgd) afd positive value. The
reader may recognise that the serfes (1) abovéMswhe exponential series, which
couverges absolutely for all real values of x,and the sum-function s is usually
dencted by ¢ (or exp z). Further referep’c}r to the exponential function will
be found in §§ 4'33, 10-12, o8

The discussion of the above limit, ¥hen « is coteplex ig given in § 591,

Note 2. The number ¢ may b\e"deﬁned to be the sum of the infinite series

1

) 1
\\I+1 Fartgytoe (4),

which we agssume tpxbefconvergent*; and from what we have just proved,
¢ iz algo the valugiaf™/

PR lim (1+1)"_
{ 4 97— o i) )
Now N |
0\ 1 1% - o
S )L et 11
\ .
d, by summing the geometrieal progression,
1+31)e1 2.t
n < +.__“2“—_1{3.

Hence ¢ is not greater than 3, and from the series (4) it is clear that e=2.

* The series is Easily proved to be convergent by Test 1, § 52,
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EXAMPLES 1L

1. For the following sequences examine whether or not they are bounded
and whether or not they are monotonic. Determine the bounds, the upper
and lower limits or the unique limits, whichever exist.

123 =«
(@) 3D prl
by 2, 1, 14, 1}, 14, 1§, ...
&)y 1,2 %, 24 &, 2% & 24, pe
() )_\’(2: 8 W4y . U :
ey 7, -2, 2, 3 13, 35, 1%, 3%, 1%, 3% e .

TAR TET IR JE N SR R R\,
2, Shew that, if @0 and 0 <Cs; << b, the sequence % N/

abl-F s [/ iab? 48D \
H=d, H= a1 ) oo BT W("’

is an always increasing bounded scquence, and find its Jimipas n » w0,

3. Ife>0and PN )

a® _ & '~.\~ L
Ty ST (e AR ey I

prove that {s,} is monotonic, and hag the umquc limit 1/{e+-1) a3 #—»®.

4, Prove that, if @ >> 1, the sequence{x,,} dofined by

ﬂ‘ 2‘4;_1
Tr=a, Ty=a, m;f;x s ey Ty =0

converges if &G elle,

5, If & and & ave pomtw@@nd 8y 1=23 (858, ¢), prove that the sequences
[y 82y 85y «nnj Sz, 84, G5y - \afe the one Increasing and the other decreasing ; and
shew that theu- comuien mit is % (9, +28;). Discuss similarly the sequence

s 2= (5 150, ahs\:gmg that the commen limit in this case is {s; 8,2

6, If {s,} i9AdY bounded seyuence, and ¥,, L, are respectively the upper
and low: bﬁ;u.\.ids of the zequence
.\’\ Sy Fnuly Sase2y reey
shew .that the sequences 7y, Us, Usy wouy Ly, Ly, K, ..o are each monotonic -
aznd Bounded.
\ Prove that the sequence {s,} is convergent, if, and only if, the unique limits
I and L of the sequences {77} and {L,} ara equal, and in this case
=lim g, =1, ’
Shew also that if U+ L the numbers U and L are respectively the upper
and lower limits of {8},
[This last result is sometimes taken as & definition of upper and lower
limita for & bounded sequence {s.}.]

42



52 BOUNDS AND LIMITS OF SEQUENCES [cE 11

7. If {s,} and {5} are two bounded sequences having lower and upper
limits respectively A, A; X, A'; prove that

(1) hm(_‘?ﬁ)ﬂ ""h__msm

AN T (o),

(ii} lim (s"+3“}““x+A =

8, With the notation of the last example, prove that, if the sequences {3
and {8, are of pesitive terms,

(1) AW glim (5,8, I\
(i) T (e AL A o

9, Uepn)y~d(r-1y=1asn-w, prove that t(n)fn-=1, < \\

10. 1If s, denote the sum to # tertus of the series \”:} ‘ W

8in 6+ § 5in 26 4 1y 5in 30+, ¢

prove that lim

Rt 0O

{3_1_1-324-...-1-_8,_4]_ 4 8in @ A\S,
T f Cy 4.3&.'6

]+sg+u- + &y,

11. Prove that ]1_1!_1 5.5 limy Tim g}m 8y

)

12, If py, pay oeey P4y -0e TR .irbltrary po‘s:twe numhers such that 2 2 -0

88 -= o, PrOVe that if ¢, = as, ea—r- @, the sequence {u,) tends to the
same hmlt &, whers ™
B "51+?32“2+ Fe b Pty
\\ Pt Pt o
13. If ap~—a and b, a8 7> » prove that both

a1bl+agb\2+-.-+%bz

P ¥
\¢;
and P\ » . 81by+ 028, 1+ +agd
. 2 ) %
_tend to aK"\,
O\

14.56) If g} isa positive monotonic decreasing sequence, and if ¢, =0,
oy530 a8 m = @, prove that
lig - lim %27 %ns1

\ }
£ =3 00 bﬂ Ho=m iy Uy = 6,‘1.1
provided that the second limit exists.

Ly

(i) Md, ;> b, and b w a8 # = o » prove that

lim % lim a.“_“__i‘_ﬁ
Lol bn Fo—ahgo u+1_b

prowded that the second Limit exists.



CHAPTER TiI

LIMITS AND CONTINUITY

31. The coneept of a function.

In §24 reference has already been made to the concept of a
function with regard to the integral variable n. By recalling what
was stated there, the reader will see that, if we take as our defini-
tion the statement that o function is o relation between real nﬂmbe?‘s\
the equation N

y=¢@ Y
implics that, given any set of argnments 2, fo some ov afll of them
there correspond values of y. The same value of g méy correspond
to more than one value of the argument #; wheh$6 each value of
z there correspands one, and only one, value@f y the function is
said to be single-valued or uniform. » \

The reader must guard against the Ndea, which is so easily
acquired after reading some elementagy\fext-books, that the concept
of a funetion applies only to those. Yunctions which are capable of
graphical representataon. The concept of a function is of very wide
application, and is not restrieted even to those functions for which
the relation between & ang. yxls expressible by means of an analytical
formula. \\

For example, let ¥ dehote the number of windows in house pumber x on
the odd side of a\ceftain given street in London. Then y is defined for a

certain number of\ofid integral values of #, namely 1, 3, 5, ..., m, where m is
the number Qfsﬁhe 1azt house on the odd side of this street. :

In orlie} that later terminology shall not be misunderstood, we
now, Qaeﬁtmn briefly some of the commonest types of function to
{ et with in Analysis.

(1). Polynomials.

A polynomial in # is of the form

PO el LY -
where the coefficients @, are constants. This polynomial is of
degree n.
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(2} Rational funcltions.

A rational function is the ratio of two polynomials, so that if
P (z) and @ (x) denote two polynomials, the general rational fune-
tion R («) is given b

() is given by P
@)’
P (z) and @ («) having no common factor.

(3) Algebratc functions. ~
- The function y=f(z)is an algebraic function of #, if ¥ is ¢he
root of an equation of the nth degree in y whose coefficier(ts are
rational functions of =, o O

yﬂ.+ Rlyn—1+ _"+Rﬂ=0_ :‘,:’."

We shall assume that the above equation is vrréducible, that is
to say it is incapable of resolution into facﬁors.w?hose coefficients
are alse rational functions of .

For example the equation y—ai=0 ::\\"
is reducible, since it implies that either y?-{-‘x%xo’ or else 83— =0, and each
of these equations is irreducibla. Fed

(%) Transcendental functions.

R ()=

All fanctions which are nofwtational nor algebraic are called

- transcendenial; this is a widgtelass of funetions, and includes such
well-known functions as simre, cos # and log @, as well as many which
are less familiar, NS

Y

It is not difficult tosProve thab sinz and cos 2 are transcendental; in fact
we can prove the more general results that no periodic function can be either
8 rational functiowmran algebraie function.

A function ﬁ(x} 18 said to be periodic with period w if f(#)=f(z+ w) for
all values g{ #for which the function is defined. The functions sin # and
COB & a.rnf:\@ymdic in 2, as are alse the other trigonometriesl functions tan z,
cot x, get:\m, cosec 2. (Ses refarence to those functions in § 4:33.)

ol

T\]IE}OREM L. No periodiz function (unless it be a mere consiant) oan b a
magitional function.,
P ()

‘Buppose that F@=ots  (QO)=0),
- where P and @ are polynomials, and that Fl@)=f{z+a) for all values of
- Let f{0)=a, then the equation of the nth degree
-  P(@)-aQ(x)=0
is setisfied by m41 values of z, viz. 0, w, 2a, ..., ne.

Hence, by the fundamental theorem of algebra, £(s) must be identically
equal to a for s} values of 2,

.

&
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THEEOREM 2. No periodic Sunction can be an algebraic function.
For, let the algebraic function be defined by the equation

YA R =0 s NS 4 § R
where the R’s denote rational functions of . This equation can be written

P+ Pry 140+ Pp=0,
where the P's denote polynomials in . Let f(0)=a, as above, then
Poatt Pran L+ Py =0
for all values of #: hence y—ea satisfies equation (1) for all values of and

one set of values of the algebraic function reduces to a constant. Now divide

(1) by y— e and repeat the srgument; divide again by ¥ —a; and so on until
it has been repeated n times. We conclude that the algebraic function has,
for any value of , the same % Values &, &y, gy «ey On—i in other wox;g's‘it,\ is
composed of 7 constants. .\

It iz also of some interest to prove thatlogxis a tmansoendegtalﬁmction.
By assuming that the reader iy already familiar with elementéay differentisl
ealonlus, it is possible to give a simple proof that log a8, Tot & rational

function.
Tarorsy 3. The yunction log x {3 not ¢ rational funetion.
It will be seen in § 4'33 that log » satisfies the e'Qua ion
d INN
e {logx)f; D (x>0}

Let X and ¥ denote ta»;o polynomials .h-;,&:ing no common factor, so that if
log x be rational, &Y

whence, by differentiation®, \Y"
PP  LI -5 R S N DUUIURORON ()
- \\ x
Thus, ¥ must be divigible by # a certain number of times (say m), and con-

sequently X canadt’be divisible by « since X and ¥ are prime to each other.

Write ¥'= Zx’“,\ivvjz*ere Z is & polynomial not divisible by =
Now _ 7AW ¥'=mZan-14 Z'am,

and, on \E;\b&ftituting in (2),

W\ Ziginl = ZX g~ ZXam1 - XZ'am,

ALt s, mXZ=x(ZX' ~ X2y - Ztam,

- Ngphich is impossible, for the right-hand side is divisible by , but the left-hand

gide is not. Hence equation (1) cannot hold, so that logz s not a rational

function of #. :

14 is proved in Examples X, 10 that log # in not an algebraic function of x.
When this bas been proved, log z will have been shewn to be & transcendental

function.

e

% We 1ea the syanbol X’ to denote ;E X.
bk
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Thereader should realise that besides the transcendental functions
-mentioned above there are others, perhaps less important, but
nevertheless of frequent occurrence. An example will suffice at
this point, Consider the function defined as follows :

y=2 when # is rational,
y=0 when & is irrational,

The graph consists of two series of points arranged upon the lines
y=2 and y=0; and although these would not be visibly dié-\
tinguishable from two continuous straight lines, in 1ea,11ty an
indefinite number of points is missing from each line® ™

Ny

311. Functiéns of more than one variable. ¢ ‘

So far only functions representable by the relatmgzy ¢ {x) have
been considered, but the extension to the concepfef a function of
several variables is easily made.

If y= ¢ (i}, the argument z is called thﬁ mde’pendent variable
and ¥ is called the dependent variable, fordfwalues of x are arbitrarily
assigned the corresponding values of~ y are determined by the

functional relation. o0
If we consider a set of indepéﬁdent variables @, ¥, 2, ..., { and
one dependent variable w, the: éE;uation
“Y AR - AU ) U, (1)

denotes the functio L\ relation, In this ease if 2, Y, B1s ..., g BTE
the n arbitrarily asg%ed values of the mdependent va.nables, the
correspending v:\ilue of the dependent variable w is determined by
the functionalzelation.

The funetden represented by equation (1) is an explicit funetion,
but whete several variables are concerned it is rarely possible to
obtam an equation expressing one of the variables explicitly in
herlhs of the others. Thus most of the funections of more than one

\v:irlable are wmplictt functions, that is to say we are given a
funetional relation

: P@, 9,2, D=0 e, 2y,
connecting the » variables #, %, 2, ..., ¢, and it is not in general
possible to solve this equation to find an ewplicit function which
expresses one of these variables, say 2, in terins of the other n — 1

* Funetions of fhis type will be considered in more detail iz §3-6.
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variables. Even when only two variables are involved it may be
impossible to find an explicit algebraical expression for one variable
y in terms of the other variable 2. A simple illustration of this is
afforded by the equation

- yP—y—az=0 .
Although « can be found explicitly in terms of y by writing

x =y -,
no algebraical expression for 7 in terms of # can be found. )
Further details about implieit fanctions will be considered lateg;
and when we have to discuss differentiability of functions of several
variables the reader will see the importance of distingnishing
cavefully between dependent and independent variables,} N

N\

312. Funetion of a fanetion. & '

In the equation y = ¢ (&), suppose that », igstedd of being the
independent variable subject to choice, ig,'&ep‘endén’ﬁ upon some
other independent variable ¢, for which-the “functional relation is
z=jf(t). If values of t, say t, fg, .-.4 tms AT assigned arbitrarily
we obfain values for @ from thesZelation @=f(): when these
values of « are substituted in ¥ = & () we obtain values for y which
are dependent on the arbitra‘ty.ehoice of values for .

If we write Y.
Ay= 70k

the symbolism denotes that y is a function of a Sfunction.
This kind of felation is easily extended to the case of several
variables, AN/
T 32 Ligl:i‘th’ of functions.
qu’&mpliciby we confine our attention first of all fo functions
_ofa single real variable. :
“\“The reader should have no difficulty in realising that there is a
theory of limits for functions of a real variable similar to that for
limits of sequences which was discussed in the preceding chapter.
The sequence {s,} is a function of the positive integral variable =,
where n agsumes only the integral values 1, 2, 3, s Pyeees and we
were concerned with the behaviour of s, as # s indefinitely
increased.
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If (%) denotes any given function of «, where & dénotes any real
number for which f{z) is defined, we shall also discuss the behaviour
of f(z) as » increases indefinitely, ranging through all real values,

Clearly the approach to infinity in which the variable assumes
the integral values 1, 2, 3, ... only is a particular case of the more
general method of approach in which the variable assumes all real
values. Hence, if a definite limit exists when the variable assumes
all real values, the same limit must be obtained if a special set of.
these values be selected (say the positive integral values) and {he
variable restricted to range through this special set only At is
important to realise that the converse is not necessarily tang®,

2 ™

321. Definitions. N

For the sake of precision it is convenient here t6 consider the
exact meaning of some of the statements which¥@ shall frequently
have occasion to use. O

A point is an ordered aggregate of real Arumbers, For example
(#, ¥, #) represents, for different valued(of &, y and z, a set of points
in three-dimensional space. Y

A function, in the general mathematical sense, is a relation
between numbers and poiﬂtg.g:ﬂ'ér instance z= f(a, y) expresses
a relation between the poing Y, y) and the number 7, which is
called the value of f(x, y. :

An inferval is a colléetion of points. Thus, the points (z, ¥, 2)
defined by the threbfnequalities

nexesh o gy<d, a"gzlgb” ............ (1)
all belong to(the interval which these Inequalities define.
The intéeval defined by the inequalities (1) is called = closed .
_ interv\a%foi' the end-points are included.among the points (z, ¥, 2)
which‘eompose the Interval,
.. (The interval defined by the three inequalities
\ ), a<s<h d<y<b, a'<s<d”
- ig called an open interval, the end-points not being included among
the points which compose the interval, - '
A neighbourhoed is a_special kind of interval, If (a1, @a, ag) be
- any point, the interval {ay— 4, ay + 4 ; a5~ h,ag+h; ag—h, a3+ A},

* See Exumnples IIT, 30,
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whether open or closed, is described as a neighbourhood of the
point (a1, ap, ds) ' _

Roughly speaking, a neighbourhood is a “cubical” interval with
its centre at the point. '

By the phrase “ (o, v, 2) 18 of the poinb (a2, @a, @g)” we mean
that &= a;, iy =2, £2=03

By the phrase “{=, y, 2) i8 near the point (a1, @z, @3)” We mean
that (=, ¥, £) lies within some néig_hbourhood of the point (a1, ¢2, ay).
When we wish to imply that the number A which defines the
cxtent of the neighbourhood may be as small as we pleage, the
point (x, y, 2) is said fo be sufficiently nenr the point (a1, Qe 4 18)")

Let f(z) be a function defined and bounded- in the:\linéa.r
interval (e, b), then, if M and m are the bounds off(w), the
number M —m is called the oscillation of the functiényf (2) in the
interval. ; \

Although all the above definitions have been fqrnitﬂa.ted or illustrated in
terms of three-dimensional space, they are app]ica}bl} équally to space of any
number # of ditensions, ‘\ v

A point in n-dimensional space is the oxdersd aggregate of real numbers
{1y &gy enr Tu)e Similarly the other definitions can be given in a form which
ia applicable to space of any finite nun@%’er"of dimensions,

3-99. Finite limit at a finite'point.

In the preceding F}aa:pter_ the only kind of limit which was
contemplated was fhe Tmit of a sequence s, as % Was indefinitely
increased. A fumbtion may approach a definite limit when the
variable tendg(#b some fintle value, as well as when the variable
tends to infinty. ‘

The-déRnition of the existence of a limit for a function of one
va.ria}o&(m) as @ approaches a finite value & will now be given.
) is said to have the limit b as @ tends to @ when, giwen &

@ gositive number 7, depending on €, can be found such that whenever

lz~al<n, jfa)-b|<e
If the above criterion is satisfied we write
lim f{z)=b,.

and f(z) may be said to econverge 10 (or approach) the limit b as =
tends to 4.



60 ’ LIMITS AND CONTINUITY [oH. m

In some cases the variable = may approach the value o from one
side only.

When z — ¢ through values of » greater than a, # approaches ¢
from the right (or from above). Similarly when z-sa through
values of 2 less than , 2 approaches o from the loft (or from below),
If when either of these methods of approach 1s considered a definite
limit exists, the following notation is adopted * : '

If a right-hand Limit exists as approaches @ from above, this -
Iimit is denoted by

lim f(z) or f(a +0). _ O\
Ifa leﬂz-ha_nd limiz:}:i:}zs, the limis is denoted by A ;:\ '
lim f@er -0, O
The statement th;t lim £ ()= involves the eifu\at,;ions
lm F@)mb= lim £

. ) g @wg iy

When f(x) approaches a finite limib B ds # tends to @ we write
_ (@) —b as x>q,

Similatly, if a right-hand limit §'or a lefo-hand Himit by exists
s @ approaches o from above ox\fforr below, we write

F{@) b a5 z > a + 0,
or : f(@jt\—l‘bgas Lo —Q,

The reader should Sbierve that there is no reason why by and b,
should in all cases, be' equal, nor is it necessary that either by or by
should be equal®to J(a). There are cases in which the three
numbers by, bg) 7 («) all exist and are equal, and any two of them
may be eqhal while the third is different, Again, it may happen
that some' or all of these three numbers may not exist. The
mpottance of these remarks will be seen later when continuity is
%ffhgid_ered; and several ilustrative examples are given in § 3-31
below. ' -

If f(z) does not approach a definite limit ag & ->q, it may
diverge to % or diverge to —o. This is expressed formally as
follows.

o ’I‘I.:a late Dr Lagthem hag suggested thag the notation » N &, .7 ¢ would prove
ugefal in these eases, See The Hathematical Theory of Limits (1925), 85.
Another notation somotimes nsed i3 x2aand £-—pq, '
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If when any positive number G, however large, is chosen, & positive
number 1 {G) can be found such that f(x) > G when |z —al<n, then
we say that

lim f(z)=co or f(z)— o as 2—>a

&=k
Similarly the formal definition of divergence to — o can be
given,
If f{z) be a function which PosBesses & graph, the curve y=7(z) possesses
an asymptote parallel to the axis of y a.t the point &=« |

323. General li:mit theorems. 7N\ \

Analogy with the definition of the limit of a seqpeh?sg {s,} as
n—>c0 suggests that there will be similar lirelt th@:(ems to those
proved in § 2-561. This is in fact the case, and the ‘proofs of the
first three of the following theorems will be\left as exercises for
the reader.

Suppose that as - a, f(z) > a ond, g,(m) ~ B3, then
1) f@+g@>atB N\

N

@ fogwas
(3) f( F@) " a promded t}:at a0,
(4) If f(w) \f(?f?) as uw— 3, then
\1 Sy @)= f{lim g @).

..' W

Proof of (41) bmce fu)—= F(B) as u—= B, given ¢, there
correspond&a number 71 (¢), such that, when |g(«)— 8| < n,

Q - | 19} = F(B) | €€ vomreemrereeininaas (L.

But g(z)—> 8 as x—q, so that corresponding to the above
“Rutober 7., a number 7 (depending on 7, and therefore on €) can
e found such that, when j# ~a|<,

Fg@ =B <M e i {(2),
By combining (1) and (2) we have, when |g— e <,
: | fig{m}—F (B)|<e
Hence ﬁ?ﬁf fg@)=riB=7s gi_'iﬂag (@)}
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| - . L)
" The reader-will see later that the condition laid down above for the validity
of {4} is equivalent to the statement that the function J () must be continuous®
at the point =8, Thua it is only true to state that :

lim /{g)=7 (lim )

if # be a continuous funetion. .

324. Finite limit as # increases indefinitely,

The function f(z) is said to approach the limit b as z tends to
infinity if given e, there ewists a positive number X such, thet
| f(2) —b] < & whenever z > X, . '

When the above condition is fulfilled, we write sither R \J)

lm f(2)=5or f(2)—>bas a0, ™

The reader may essily modify the above definifion to include
the case in which @ tends to infinity through neggti}fe values, that
is when & —»— 0. ) \ _

If the function f() possesses a graph, the a.bdv’s\ definition, corresponds to
the existence of an asymptote parallel to thta’a,x\"m‘of #; the asymptote is the
line y=b. : C\N
- All the different cases of tendenty to a limit are included in a
single general definition which ean'be stated as follows:

Any endless progress of a _r}érie‘mlly determines a corresponding
endless progress of f(@)~If there 1s related fo this progress &
number b, such that 1f wésélect any positive number ¢ as small as we
please, there 1s alwdys o ’cowesponding definite stage tn the progress
of flw) after whieh it is clways the case that | J(z)—b| <e, then
S (@) tn this pragwess tends to a limat,

As we haye already seen, in the case of functions of the positive
integral ¥afiable n, tendency to a finite limit or to infinity are not
the oply possibilities. In fact monotonic sequences are the only
onesswhich possess this property. The reader should observe that
fitite or infinite oscillation is possible for functions of the real
yariable , and it will be found to be 2 helpful exercise to formulate
precise definitions corresponding to these cages.

The general limit theorems of the preceding paragraph all apply
to the case in which & tends to infinity. By contrasting the
definitions of the existence of a limit as £ —» ¢ and as =0, the
reader will see that, with slight modifications, the proofs are almost

* For the definition of & continuous funotion ses § 3-32 below,
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identical. TIn fact, the proofs of these theorems in the case where
o> o differ only slightly from the proofs of the fundamental limit
theorems for sequences given in § 2561

3-3. Continuity.

The notion of continnity is a direct consequence of the concept
of a limit. The special class of functions known as condinuous

Jfunctions possesses many important properties which will be,

investigated in this chapter. It is very important to separate the
properties of continuous functions from those of functions in genéral.
In many elementary text-books, in which none but continhous
fanctions are eonterplated, the properties of continuogs.fpﬁctions
are assumed and applied frecly to every funetion considered. This
leads to no difficulty so long-as continuous fonetlons alone are
considered, but it is easy to construct cases of falluré by considering
a discontinuous funection for which the prgpe}tf_}‘ in question fails
to hold. Examples which are given latepawill illustrate this point
clearly. A '

For simplicity we confine ourselvesyrainly to functions of a single
real variable, but the extensionsifo functions of more than one
variable will be suggested in §#5. It may, however, be stated that
the proofs of most of thestheorems which follow can be adapted,
usually with only slightyehlianges in terminclogy, to the case of
functions .of more th"s.g\é’ne variable,

3:31. Gontin}lqﬁs"functioﬁs.

Rougli}y\'ébefaking, continuity means the identity of limits with
values. .Qentinuity is the property of a point, and the question for
our gonsideration is as follows. Given any function f () defined

_iwthe range a <z < b, say, then at the point a5, where ¢ < 29 < b,i8
\thé funetion f(z) continuous or nob?

We can extend the concept of continuity and say that a function
F (@) is continnous in an interval if it is continuous ab every point in
the interval. Essentially, however, continuity s the property of a
point, and the concept is only extended to an interval in the way
just indicated. :

Several examples will now be considered, '
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v Evample 1. Consider the function. defined as follows:

Fay=t=2
Fiz)=a when 2 a.

Discuss the behaviour of this function at the potnt £=a,
- Now, except when r=a,
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when 0 x < g,

__“_=x+a’ ]/
&=

but as # approaches the value & from below, it is clear that the value of the
fraction (#?—a?)/(x — &) becomes more and more nearly equal to 2¢, in fiet

N
22— g? ¢\
=2

2O e

lim
: Fwa-f F—& « \W
It must be elearly realised that the wvalue of the ﬁ-acti(gr%q;?—a-?;;'(x—a]
when £=~q is indeterminate or meaningless, for the ratio #78s undefined,
The function £ (»), kowever, bas the value @ when p=g, Tor this value has
been assigned to it by definition, hence, when z-=a,\

Al

F@=0 it (2},
'\ v
NS
),.' .
e w —~ = —
TR Y '
SNy Y 1
* ’. I
o - I
I
\ afe——__ ]
o~ 1
¢\ ’\ |
\\ ) 1
‘ :
4 T 0 'y F3

' : ~1\Efg. 3 . Fig. 4
Ezamipatien of the graph of the function Fin

contim\%rt’y* when g=a. As we shall see, thig
; ineguality of the limit (1) and the value (2),

&

in Fig. 3 at once suggests a dis-
is ensured analytically by the

"\iﬁ‘xamplc 2. Consider the function
\™

2 gt
. P (-‘"")';“x__;

B (x)=2a

The graph of ¢ (#) is Nustrated in F
when 2=q.

when O < a,

when x> q. )
ig. 4, and it suggests no discontinuity

* The .primitive geomet?rica.l soneept of continmity for & funetion which poIsesaes .
a gra.ph is f-hat the functlon is oontinmous if its graph be an usbroken eurve. 4
point al which there is a sudden bresk in the curve ie thus a point of discontinuity.
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‘The limit (1) of Example 1 is again the same, but in this case when =0
G (2)=20 ccrrrnnes eererrrberiararesranis (3%,

40 that the limit of ¢ («) as &= ia the same a$ the value of ¢ (z) st 2=4a,
both being equal to 2¢. In this case there is nio sudden break in the graph.

&t —a
. Ezample 8. V=77 when 0w ¢,
Ylx)=a when = =d,
¥ (@)=2a when & > G
]
2a ¥
[}
! N
i ¢\
1 N\
| -+P N
1 P
1 “\ 3
I LED
) AN
o) 3 N\
¥Yig. § >
g .‘i\\'

Lo this case lim $(@)=26, ¥ (@)=a NI §(0)=2a,
2 == g1 ) ¢ 27"“+0
and there is again a discontinuity whe’r»,’r,":& due to the isolated point 2 i
Fig. b. i » ’ )
332, Formal deﬁnitiop;fuof' “gontinuity. .
The reader who hagsgfﬁs}efully examined the preceding examples
will have realised how easily discontinuities may be recognised in
a graph. In fact fobthose functions which admit of simple graphical
representation, this is certainly the easiest way of finding points of
discontinuitys” We now give the formal definitions of continuity,
from which definite conclusions can be drawn-for any function,
Wheﬁh& it be capable of graphical representation or not. In any
c:aaefﬁhe graphical method illustrated above only indicates pointe
<‘qf’&iscontinuity of functions which can be represented graphically;
it does not prove anything. _
DerixiTioN 1. The function f(x) s said to be condtnuous when
& = @y, if f{x) possesses a definite limit as x tends to the value #
FROM EITHER SIDE, and each of these limits is equal to f (o)
lim fl@)=f@)= lm f() ‘
LR A & —magt0

PA 5
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Derisrrion 2. The function S () is continuous when =z, if
given €, a number 5 (¢) can be Jound, such that, whenever | 2 — Bl -

Lf(2) = f(20) | < . _
The equivalence of the two definitions is at once obvious if the
second be compared with the definition of a limit in §322. The
remark in that section about the right-hand and left-hand limits
as z tends to o not necessarily being equal will now be understood,
We have now seen that only in the case where S (x) is continugug
when @ = ¢ will it be true that N
i f@)=F(e)= lim f(a). R\,

'\

For most simple functions the graph will suggest ap Wbdt points
In a given range of values of diseontinuity is tG\be expected,
It must however be borne in mind that the ana{}t}cal method of

deciding whether or not a given function is confitnious at a specified
point aq (say) is to examine whether the thrde numbers

lim @) fla), ik @)

2 = 5y — )
are or are not equal, Cases frequenﬂir"é.rise in which one or more
of these numbers do not exiss, Jf} (%) assumes, when 2 — @y, the
indeterminate form 0/0 we mudts say that S (wo) does not eaist. In
such a case there cannot be féontinuity at @ =gy, even though
S (2o~ 0) and f (2o + 0) both exist and are equai,

The function (42— aﬁ{g:—t &) is defined for all real values of excopt v=a,
Sinee its value when w2g\a indeterminato, nothing more can be said about
ity continuity when x:za. Howevor, & valua for the function when p=r may
be agsigned by defindtron. It will be seen that the function defined as follows:

\/ 22—
07 Fw=te
"\\ - Flxi=4 when z=gq,
e a qisgpntinuous funetion at the point z=aq for all values of 4 oxcept 4 =2,

Phe“function defined above when 4=2« i3 said to he continuous at the
DOt 2=a by completing ity definition.

Continuity in an interval. A fanction f(z) is said to be con-
tinuous in the closed interval (a, &) if it is continuons for every
value of 2 in a < z < b, and if £ (a4 0) exists and is equal to f(a),
and f(b — 0) exists and is equal to 7 (3),

It is easily deduced from the theorems on limits thas the sum,
product, difference or quotient of two functions which are con-

when #2 q,
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tinuous at & certain point are themselves continuous at that point
{except that, in the case of the quotient, the denominator must not
vanish at the peint in question).

Further it is true that a continuous function of a continuous
function is a continuous function (§ 3:23, 4).

Ezamples. The polynomial

P(a)=ogan+ o a1+ 4,

ig continuous for all values of 2.

The rational function Bix =%§; :
28D
is continuous in any interval which does not include values of # which LQa.T:e
g {x)=0. ) )

The fanchions sinz and cosz are continuous for all values of @ylog x is
continuous for &> O; e* is continuous for all values of #; tan g i?\s‘continuuus
in any renge not including any of the points #= (B+d)w (nT-—'Q;,\l, Dy aeeke

34, Properties of continuons functions. <)

TEEoREM 1. THE FUNDAMENTAL THEOREi({x ON INTHERVALS.

If I, Ity ooy Iny oo ave Linear z'ntervgdé; each of which is con-
tained in the preceding, and the lengthd, of which tend to zero as n
tends to infinity, then there exists . wiique point & such that every
neighbourhood of E contains alb But o finite number of the gwen
intervals. ~ \ ot

Tet I, be (@, b,), then-sinte I, contains Tri1, v Lo

%:“éan+1: bﬂ}bﬂ+1-
Hence, :
\ Oy € O2€ - e C B vrr vrienrennss verenrnnn (1),
AT BipB> o BhaBa (2).

The sequence® (1) of left-hand end-points 1s monotonic increaging
and every erm is less than by, hence, by § 258, '

AN an—+a by
&?fﬁi’lé.rly the sequence (2} is monotonic decreasing, and
6n — B 2> 0.
If we shew that & = 8, we have proved the existence of the unique
point £. .
We have’

|ty —a| <e for m 2w,
nz

|Bn—B|< e for

Vg,
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.and since the length of I, tends to zero as 7 — oo s
- |@n—bnl < e for nu,
Now
la— 8| =]t = tn+an— by + b, — B
_ Sla—aa[+{an - by + | by— B < Be
for n > v, where » =max (vy, vy, v,).

Since a and 8 are independent of n, it follows that a and\ 8
coincide and a=g@=£ Clearly A can be so chosen that\the
neighbourhood (£ — , £ + k) strictly contains the interval ¥y, and
hence 7,,43, Lnyz, ...; and however small 4 is chosen there will be
a value of n such that the length of 7, is small epough for I, to
be strictly contained in the neighbourhood (& —#)¥ + 4). Hemce
every neighbourhood of £ contains all but a ﬁﬁ}te number of the
intervals 7,

| o\

! 341 THEOREM 2. BOREL'S rHEOREM*

P Let (&, b) be o closed lLinear wnterdly suppose that we are grven

 aset J of closed intervals such #hut every pownt P of (a, b) s an

i enerior pointt of at least onesof these intervals J (P); then a

i FINITE nwmber of these claseja}’oi?ite-rvals "
L, Ty oy T :

can be chosen which $ossess the same property:—every point P of

(a, b) 1g an inteﬁo%}oint of at least one of them: in other words the

interval (a, b) éon be completely covered by o FINITE number of

witervals of pheset J. '

A set ofanbervals j, can be associated with the intervals J as
follow {Bach Jr 18 an interval which contains at least one point
(ngt,jah end-point) P, of (g, b), and no point of §, lies outside the
ugerval J (P,). The intervals J» will be called suitable intervals, or -

“\briefly, intervals (). :
AV, : — :

If the whole interval (, b} is suitable, the theorem 1s proved.
If not, biseet (a, b); if either or both of these intervals is nob.

* Alpo ealled the theotem of Borel-T.obssgue or the Heine-Borel thaorerm. The
proof given by Heine that every continuons function is uniformly eontinuous eon-
tained the germ of this theorem- (Journal fir Math. nsxv (1871), 188), It appests

to have been first explicitly stated and proved for & linesr interval {a, b} by Borel, .
Ann, de PEcale Norm. (8), xur {1895), 50.

T Exzcept when P coincider with g or b, when it is gn end-point,

LA
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an (), bisect it or them® The process of bisecting intervals

which are unsuitable either will terminate or it will not. If it doea

terminate the theorem is proved, for (a, b) will have been divided

into a finite number of suitable intervals 1y Jas en s Jms BBF) and the

seb of associated intervals Ji, Jy, .., Jn will be the fimite seb
~ required.

Suppose that the process of bisection does not terminate, and
lot an interval which can be divided into suitable intervals by the
process of bisection be called an interval (B).

By hypothesis (a. &) itself is not a (B), thorefore one ab least of
the bisected portions of (a, b) is mot 2 (B). Choose the one whieh
is not (if neither is a (B) choose the left-hand one); bisect this'ard
select again that bisected part which is not a (B), and sp.on.” This
process of bisection gives an unending sequence of intervals

Il, Iﬂ, ISa ruay Im e 'M}\\

Q

such that \
(i) each is contained in the precediai}g,\'
(i) the length of I, tends o ze}'d:él - 00,
(iii) the interval I, is not an {S¥
The same argument as was used +n Theorem 1 shews that these
intervals converge to a uniquejilifnit point & which is certainly a
point of (g, b). S
By hypothesis there is & number A such that every point within
a distance kb from & ii(a-tpoint of one of the intervals J. If n be
chosen so large that he length of I, is less than b, then ¥ is an
interior or an g}{dfpoint of I, and the distance of every point of I,
from £ is 1e§3\:than k.
Hence £495 an (9), which contradicts (iii).
"Thethypothesis that the process of bisecting intervals does not
" terminate involves a contradiction : hence the process does terminate
~&p§‘~the theorem 1s proved.

2

3411, Note on the preceding theorems.
Both the preceding theorems are of an abstract nature, and the -
' reader may wonder whai is their importance. The importance of

# A snitpble interval is not to be biseated, for one of the parts into which it is
divided mizght not be snitable.
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these theorems cannot be over-emphasised, for theyare fundamental.
Without appealing to one or other of these it is impossible to
prove the theorem which follows concerning the oscillation of
a continuous funetion, a theorem which will be seen to have
fondamental importance in the theory of integration.

It is essential that the reader should realise that a point has
now been reached beyond which we cannot proceed unless the first
or second of the above theorems has been proved. This will be
clear when it is seen how all the theorems which follow depend
upon those which have preceded them. Since the impgriant
theorems of the differential calenlus, including Taylor's fﬁ\ao‘rem,
depend for their proof upon the properties of continuousfinetions,,
the preceding theorems are therefore also fundamental to the -
differential ealeulus. ¢

The reader will see that Theorem 17is sufficieti for our immediate
requirements, and the properties of continhdds functions which
will now be proved can be demonstrated #ibhiont appeal to Borel's
theorem. Theorem 1 isa theorem on utervals which is less general
than Theorem 2, but Borel’s theorefn has important applications
in other branches of Pure Math&matics*, and it is one of the
important theorems in Analysiel ¥There are several other-theorems
of the same type which aré® outside the scope of this bool;

theorems of this kind ate sometimes spoken of as *covering
theorems,” o) )

3-42. THROREM 3, }_‘}}f () is continuous in the closed interval (a, b),

then, given e, thewdnterval con alwoys be divided up into a finite

number of su?—?nterm&s such that :
0 f @) -S| <, |

when fz?\\a'nd #" are any two points in the same sub-interval,
Suppose that the theorem is false. Then, however we sub-divide

L. {@)b) there must be at least one of the sub-intervals for which the
theorem is false.

* It was pointed out by Baker, Proc. London Matk. Soc. (1), sxxv, 459, and
(2), 1, 24, thut Goursat’s proof of Cauchy’s fundamental theorem in the theory of
funetions of & oomplex variable (Trans. Amer. Math, Soe. t {1500), 15) practieally
eontzing Borel’s theorem, -

Boral’s theorem is also of fundamental importance in the theery of sets of points;
in particular in the theory of measurve of a linear Bet. Bes de la Vallde Poussin,
Intégrales de Lebesgue (1916}, § 17,
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Apply the process of repeated bisection; and at each stage
choose a bisected part for which the theorem is false, In this way
we obtain a set of intervals (an, by) satisfymg the conditions of
Theorem 1, and whose end-points therefore converge b0 a upique
limit point £ Also each interval (¢, by) is such that the theorem
is falge for it. Suppose, for definiteness, that £ does not eoincide
with a or b. .

Since f{=) is continnous when &= £, there is a value of such

that, when |z —£)<%, A
o |f@)—f(]<e

If » be chosen so large that b,—dn is less thap =, thef the
interval (@, b} 18 contained entirely within the interval () )

(E—m, E+m), N
. tn< E < A
Thus, if # and & are any two points in (¢, b,f), 4 :
F) - F®I<e |FEAFD]<e
Hence, |/(&)—F(@) <1 @)~ GUFIFEO —F @]

< 2e. \ .

for £ is such that

"The supposition of falsity 1@:;2{fé %o a contradiction, hence the
theorem must be true. O8N

The argument is easily‘.ni’od'iﬁed if & coincides either with @ or
with b. PR '

- 3421, THEOREM 4 A function which is continuwous tn an interval

is bounded thergin)

Suppose ghatthe interval {a,b) is divided into gub-intervals which
satisfy 1;h{32}dhditions of Theorem 3. Let the dividing.points be

R\ L @, &1, By ceey Bncls & == b
Now F@ €| f(@i+if @)= f (@]
~O <|fla)|+e
\ ‘when 0 < @ — ¢ <&, — &, 8o that _
|F (@) < @] FE vorennemnianaeranses ).

Similarly, when 0 <z — @1 €22 — &1,
| f (@) | < |l | +] /(@) —Flen]
< !f(.‘l?;[) ] + €
<{f{a)|+2
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by (). Hence, | f(m)] < |F(a)|+2e
By proceeding in thig way we get, when O <o -2, 1<b—a, 4,
' ' [f@} <] fla)|+ne voonvivnnrrennin (2).

Thus, since iilequality (2)is clearly satisfied in the whole interval
(2, b), the- theorern i§ proved.

3:43. Uniform eontinuity.

 Woe have seen that, if £ () is continuous in (a, b)*, then, given's,
we can find a number 4 such that, whenever | o' — <, A
| | /(&)= F(z)| < e AN\

We know that 4 depends upon the chosen value of ¢, but is also
& function of , for n will in general be different at ,diﬁ'éfbnt points
of the interval (g, 5), LV -

This is at once clear from Fig. 6, for if ABus.divided into equal
parts each of length ¢, the corresponding sabxdivision of (g, b) is
such that the value of % is not the saruq{ﬁi»a.ll points & in (@, B).

$
\
v « \J

<

N A

- '"\50
2 & .

™
S

NN Fig. 6

C p——

[ &I oy r

"\" \
\ If it is possible to find a positive numher h, such that, when ¢

hag been chosen, _
|fl@) =/ ()] <e, -

whenever & —z|<h(e),

* The interval (a, ) is taken to mean the elosed interval unless the gontrary is . .
stated.
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the number A being INDEPENDENT OF #, then JFx)is saad to be uni-
Sformly continuous in {a, ). '

In general, the value of % depends upon the particular pair of
values # and #. The important point in the definition of uniform
continuity is that the number & must be independent of a. When-
ever such a number A can be found,

[fl@)—F@)|<e

for every pair of values @ and &' in (a, b) whose distance apart does
not exceed A

THEOREM 5. 4 fzmctwn which is continuous in an mterml % um-
Sormly continuous in the interval®. 4

Let the given interval (a, b) be divided up inte sub* mtervals
(a, @y), (&1, #2), ..., (@n-1, b), such that for any two po{]ts z, & in the

same sub- 1ntervai
| @ —F@)<te
Let A be a positive number not exceeding t\][if}léaat of the numbers
& —a, mg—.{l’:i. ", ‘b-—"a"}‘ﬁ_l
Now choose any two points #, & 1n (a ) such that | &’ — «” | does

not exceed A.-
If these two points belong tia) the same sub-interval, then

(@)= f @< de.
If they do not belongtbdshe same sub-interval, they certainly lie
one in each of two chubwe intervals; suppose &, is the d1v1dmg

point such that A\
”." a‘,._1<w {mr<.,c L il

then [/ (4() S @) </ @)~ )|+ f @) — —f @)

O <le+ie=e
Hence~§wen ¢, there exists a positive number %, sach that
&Y [f@)—f@)] <6

Qv’hen « and & are any two values of  in (@, b) such thab
|&"—a” | <h.
Note. Tt is essential to the above theorem that {a, b)eshould be 5 daaed
interval, 8o that 7{) is continuous at every point in ez b, For example

: . A
consider the function sin — in {0, 1),

* This theorem on upiform continuity is due to Heins, loc. ¢its
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Now ain% is contirucus in 0 <21, but it is discontinucus when z=0,

The function aina—l: is not uniformly continuous in (0, 13; it is of coume

uniformly continuous in (3, 1) where § > 0.

3431, Note on the concept of uniformity,

The above theorem shews that it ia unnecessary, for a funetion of a Sl
variable #, to draw any distinetion between functions which are uniformly
and those which are non-uniformly continuous in the continueus domain of
, for all continnous functions are uniformly continuous, P ™

The concept of - uniformity, however, is of fundamental inpertance in
Analysis, gnd should be clearly understood. N
Given «, suppose that £ {#, £} is a function of two variablds ¥ and £, which,
. for every poiut x of a given closed interval {2, ), aatisﬁeﬁ?tl;e inequality

£ £)] <t e Wi N (1,

when £ is given any one of a certain set of valued ﬁ}nﬁted by £, the particular.
set of values depending on the particular valte'of x under consideration. If

& set £ can be found, such that every mentber of the set £ is a member
of all the sets £,, then the function Flzy,E)ds said to satisfy the inequality (1)
wniformly for all points # in (@ B). If% given function ¢ (#) poasesses some
property for every value of ¢ in virfle of the inequality (1), the function ¢ (x)
is then aaid to possess the propertyaniformly.

One of the most iraportant(ieas of Analysis is that of uniform CORPETGENcE.
Consider the sequence symby which is a function of % and of 2. Tn this case:
the £ of the preceding&iftx{’ciemant is the integral variable . :

Buppose that g, (Bl (») a8 n-= o for all values of = ina given interval
(@, 8). If, given ep@atimber m can be Jound suck that

AS
_ o oo () =2(2) [ <«
Jor all yaly :’of nzm(e) where m is INDEPENDENT OF &, then s, () is said to
: come:}giky‘imﬂnn 2o 8 (%) Tn the interval (@, b). .

Imvgeneral, m depends on ¢ and on @; if m (e, %) denotes the least m for
whtich the above bolds, and if, for fixed ¢, and for all values of # in (a, &},

\ 4 m (s, '”)SF (E),

then » can be chosen instead of m, and the convergence of s, () to s (z) is
uniform in (g, 5). .

Uniformity of convergence is a highly important concept, and it will be
considered in detail in the last chapter. We have seen that continuity in su
interval implies uniformity of continuity, hence the latbar concept is not an
important one. Convergence however does not imply uniformity of conver-
gence, and so uniformity of convergence is s highly important concept.
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s 44 TREOREM 6. A continuous function atfains ifs Bounds.

If f (@) is continuous in (@, 5) and M and m are its upper and
jower bounds, it will be proved that there are at; least two points 2y
and @ In (g, b) such that '

Fla)=M, f(m)=m.
Suppose that M is not attained; then M— f(«) doss not vanish

at any point of (a,5); hence (M — f{(«))~* is a continuons function,
and therefore bounded. If & > 0 be its upper bound, we have « {\

1 O\
| T <®
so that M-fley> é, ' “':"5'«.'
. 1 A\
that is, Jlzy s M—=; )

~ but this contradicts the fact that M is the\zpper bound of f(:;c)
in (a, ). N
Hence M must be attained.
Similarly it may be proved that m 15 s attained.

CororLary. In virtue of the above theorem we ean now state
Theorem 3 in the following naefal form: '

I¥ f () is continuous, a?z\tfw snterval (@, b), ther (a, b) can be sub-
duided into a finite Kmnber of partial intervals in each of which the
oscitlation of f(a)g less than any given e

c{’%ﬁﬁf TaEoREWT. If f(x) is continuous in (a, b) and f (@) and f(B)
\ Qdiffer in sign/then f (x) vanishes at least onse between a and b. <%
¥ Tofixthe ideas, suppose that f(2)< 0 and £(B) >0. Since f(@)”
is confqnuous it will be negative in the neighbourhood of ¢ and
"PQSI‘JIVE& in the neighbourhoed of b, The set of values of 2 between
‘and b which make f (&) positive is bounded below by a,and hence
possesses an exact lower bonnd %: clearly a< k< b.
From the definition of the lower bound, the values of f(#) must
be negative or zero in agax<k. Since f(2) is continuous when

&=k, )
lim f(@)=f(®).
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Hence f(k) is also negative or zero, We shall shew that £(k) can-
not be negative; for if /(%) =—c, where ¢ is positive, then thers
exigts a positive number 7 (¢) such that

f(@~-Ffk)<c when [o—Fk|<q,
since f(«) is continuous when =% The funetion f () would then
be negative for those values of  in (a, b) which lie between % and
% + u, which contradicts the fact that & is the lower hound of the
“set of values of & between a and b which make f(x) positive,
It follows that f(k)=0, and the theorem is therefore proyed.
CoroLLARY. If f(a) and f(b) are unequal, and f (z) is ceptinuous
i (a, b), f (&) assumes at least once every value between 5 (a) and
F(b). ' O
Let & be any number between f(a) and f (). (The continuous
function ¢ (@) = f (#) — & bas opposite signs. wWheh @ = and when
@=b. Hence, by the theorem, ¢ (z) vanished)at least once befween
@ and b, so that for this value of «, £ (w)gé

35, Continuity of funciions of _m@ré' than one variable,

Consider, for definiteness, the‘aéﬂse"of three variables @, y, . The
extensions of the preceding theoreéms to functions of more than one
variable are rendered morgvsimple by the following method of
‘reducing multiple limitg/to stmple limits,

If o> a, y—b, 2=»0; expressed symbolically as

KN @ 28,5, 6) e, (1),
and we define by the equation
NO w=o-al+]y—bi+]s-c]

then the gfatement that e tends to zero- is equivalent to the three
statements which are symholically expressed by (1).

Ifbe defined by the equation
o n={(@=af+ (- b+ (o — o,
the statement that 7 tends to zero is also equivalent to (1).

The goometrical interpretation of o and 5 is that » is the length of the
shortest path from {a, B, &) to (z, ¥, ) which is composed solely of segrnents
parallel to the axes, while 5 is of course the distance batween the points (a, & ¢}
and (2, g, ). :

Although the geomstrical . analogy does not extend to more than three

dimensiong, the above notions can be extended to a function of n variables if
(#15 #3, ..., #,) denote the coordinates of a point in #-dimensional hyper-space. .
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3'51. Continuity for a funetion of two variables.

For definiteness, the definitions of & limit and of continuity will
now be given for a function of two variables # and y. The reader
will see that they are the obvious extensions of the definitions
already given for functions of one variable,

DEFINITION OF A LIMIT. The function f(=, y) s said to tend to
the limit I as x tends to the value o and y tends fo the value b +f,
given €, @ positive number p (e} can be found such that

[z y)-tl<e O
for all values of @ and y such that O
le—algp and |y-—b|gu N

Thus for all points (=, y) within the square of cenfre (a, b) and
whose sides are of length 24, the values of f(z, y)*:}vill differ from
{ by less than e. \

Clearly we could substitute for the square aeircle of centre (a, b)
and in this case the statement that N\

Viz—a) +(y - <,
replaces the statements |# —a|<ulfy’—b]<p.

DEFINITION OF CONTINUITY. The function f(z, y) is said to be
continuous af the point (a, BINLf, given ¢ we can find a positive
nuwmber w (6) such that N\

S (Bla, 9)—Fla, )| <
whenever Ixﬁ-a[g’,u\a dly—b|ge :

The alternative fefinition of continuity i that f (e, ¥) is con-
tinnous at theSpoint (a, b) if £ (=, y)—f (e, b) when ¢—a and

Cy-+bin an@qﬁannsr.

" The ﬁ@tﬁgr should observe that to assert the continuity of a
funqﬁb} of two variables is to assert more fhan its continuity with
respect to each variable separately. Clearly,if f(#, ) is continuous

“iriboth variables in accordance with the above definition, it will also
Be continuous with respeet to # (or y) when any fixed value is given -
to y (or ). The following example will shew that the converse is
not necessarily true. _

Egample. Consider the function

J (”:x?))=§%‘? when 2 and y are not both zero,
f (0, 0)=0.
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If y=8 the function 2x8/(23+ 82 is continuons for all values of 2, including
the value =0, and similarly the function 2ay/(a?+#?) is continuous for all -
values of ¥, including the valuo y=0.

Write 2=y cos 6, y=ysin 8, then the statements x =0, 4 -=0are equivalent
to the statement that 7 +0. But f(x, y) =sin 26, which is independent of 5
and may have any value between —1 and 1. '

Since tho value of the function at the point (0, 0 is zero, the limit and the
value dre not the same at the origin, so the function is not continuous in
both variables in any domain which inctudes the origin, A~

The explanation is as follows. When we assign &